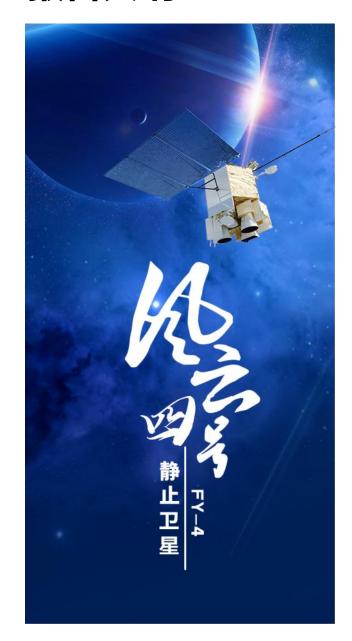


FY-4B预处理总体介绍

报告人:杨磊、曹赟、李路、窦芳丽、王志伟、王静

国家卫星气象中心

二〇二三年八月


国家卫星气象中心 (国家空间天气监测预警中<u>心)</u>

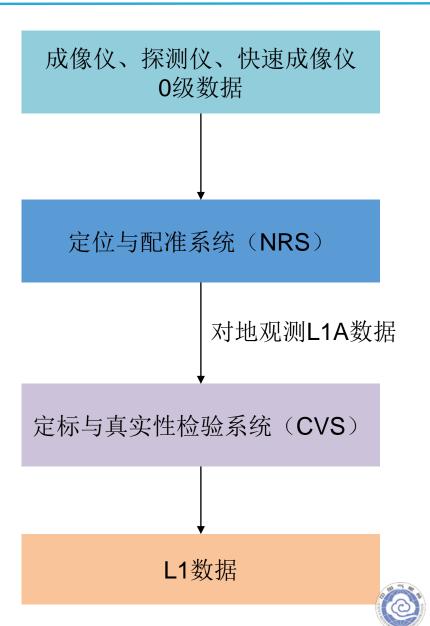
报告大纲



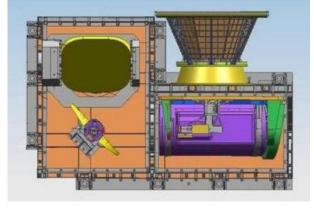
背景	01
FY4B预处理简介	02
FY4B预处理关键技术	03
FY4B预处理系统运行情况	04
小结	05

风云四号B星于2021年6月3日成功发射,2022年12月1日地面应用系统正式业务运行。

装载的有效载荷有:先进的静止轨道辐射成像仪、静止轨道干涉式红外探测仪、快速成像仪和空间天气监测仪器。



风云四号B星数据预处理主要完成静止轨道辐射成像仪(简称成像仪)、静止轨道干涉式红外探测仪(简称探测仪)、快速成像仪三类对观测仪器的图像导航与配准、定标与真实性检验。



二、 FY4B预处理简介

风云四号B星先进的静止轨道辐射成像仪技术指标

波段	中心波长 (µm)	带宽 (µm)	空间分辨率(km)	灵敏度/信噪比		主要用途
1	0.47	0.45~0.49	1	S/N≥90(ρ=100%)		小粒子气溶胶, 真彩色合成
2	0.65	0.55~0.75	0.5	S/N≥150(ρ=100%) @0.5km	S/N≥3(ρ=1%) @1km	植被, 图像导航 配准恒星观测
3	0.825	0.75~0.90	1	S/N≥200(p=100%)	S/N≥3(ρ=1%)	植被,水面上空 气溶胶
4	1.379	1.371~1.386	2	S/N≥120(ρ=100%)	S/N≥2(ρ=1%)	卷云
5	1.61	1.58~1.64	2	S/N≥200(ρ=100%)	S/N≥3(ρ=1%)	低云/雪识别, 水云/冰云判识
6	2.225	2.10~2.35	2	S/N≥200(ρ=100%)	S/N≥2(ρ=1%)	卷云、气溶胶, 粒子大小
7	3.75	3.50~4.00(high)	2	≤0.7K(315K)		云等高反照率目 标,火点
8	3.75	3.50~4.00(low)	4	0.2K(300K)	2K(240K)	低反照率目标, 地表
9	6.25	5.80~6.70	4	0.2K(300K)	0.9K(240K)	高层水汽
10	6.95	6.75~7.15	4	0.25K(300K)	0.9K(240K)	中层水汽
11	7.42	7.24~7.60	4	0.25K(300K)	0.9K(240K)	低层水汽
12	8.55	8.3~8.8	4	0.2K(300K)	0.4K(240K)	云
13	10.80	10.30~11.30	4	0.2K(300K)	0.4K(240K)	云、地表温度等
14	12.00	11.50~12.50	4	0.2K(300K)	0.4K(240K)	云、总水汽量, 地表温度
15	13.3	13.00~13.60	4	0.5K(300K)	0.9K(240K)	云、水汽

成像仪

成像仪扫描图

相关文档

L1数据格式说明

大气产品格式说明

陆表产品格式说明

海洋产品格式说明

辐射产品格式说明

☑ FY-4B AGRI全圆盘L1 500M数据格式说明

☑ FY-4B AGRI全圆盘L1 1000M数据格式说明

☑ FY-4B AGRI全圆盘L1 2000M数据格式说明

口 FY-4B AGRI全圆盘L1 4000M数据格式说明

以 FY-4B AGRI全圆盘L1 GEO数据格式说明

☑ FY-4B AGRI中国区域L1 500M数据格式说明

☑ FY-4B AGRI中国区域L1 1000M数据格式说明

☑ FY-4B AGRI中国区域L1 2000M数据格式说明

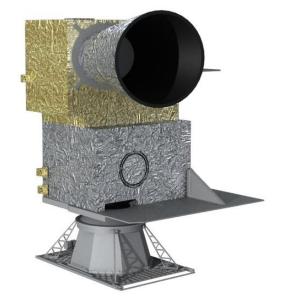
☑ FY-4B AGRI中国区域L1 4000M数据格式说明

☑ FY-4B AGRI中国区域L1 GEO数据格式说明

一级产品的格式说明文档

获取方式:

http://www.nsmc.org.cn/nsmc/cn/instrument/AGRI.html





ı

风云四号B星干涉式大气垂直探测仪技术指标

参数				
探测波段	长波: 680~1130cm ⁻¹ 中波: 1650~2250cm ⁻¹ 可见: 0.55~0.90μm			
灵敏度	长波: 0.5 mW/(m²sr cm⁻²) 中波: 0.1 mW/(m²sr cm⁻²)			
光谱分辨率	0.8cm ⁻¹			
空间分辨率	红外:星下点12公里 可见光:星下点1公里			
辐射定标精度	0.7k			
光谱定标精度	优于10ppm			

探测仪

探测仪扫描图

相关文档

☑ FY-4B GIIRS中国区L1 12KM数据格式说明

一级产品的格式说明文档

获取方式:

http://www.nsmc.org.cn/nsmc/cn/instrument/GIIRS.html

FY4B预处理简介

风云四号B星快速成像仪技术指标

通道序	号	波长范围 (μm)	空间分 辨率 (km)	探测器阵列	主要用途
22 VNIR 4	1	0.45~0.75	0.25	2048×1	全色,白天植被
	2	0.445~0.4 95	0.5	1024×1	蓝,白天气溶胶
	3	0.52~0.57	0.5	1024×2	绿,白天气溶胶
	4	0.62~0.67	0.5	1024×1	红,白天气溶胶
	5	1.371~1.3 86	0.5	1024×1	白天薄卷云
	6	1.58~1.64	0.5	1024×1	白天云雪、水云/冰 云识别
LWIR	7	10.3~12.5	2	256×4	夜间成像

快速成像仪

快速成像仪机械结构

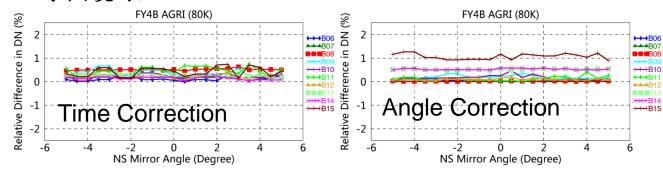
相关文档

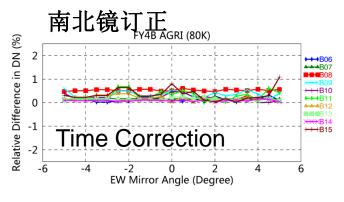
- □ FY-4B GHI区域L1 250M数据格式说明
- ☐ FY-4B GHI区域L1 500M数据格式说明
- ☐ FY-4B GHI区域L1 2000M数据格式说明
- □ FY-4B GHI区域L1 GEO数据格式说明

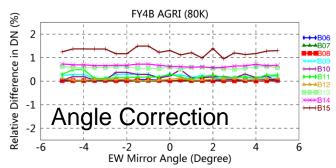
一级产品的格式说明文档

获取方式:

http://www.nsmc.org.cn/nsmc/cn/instrument/GHI.html

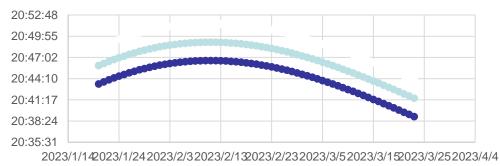





实现了红外通道信号随扫描镜转角及时间跌落订正算法

订正前后观测DN相对偏差对比 (辐冷80K)

东西镜订正


静止轨道漫反射板定标

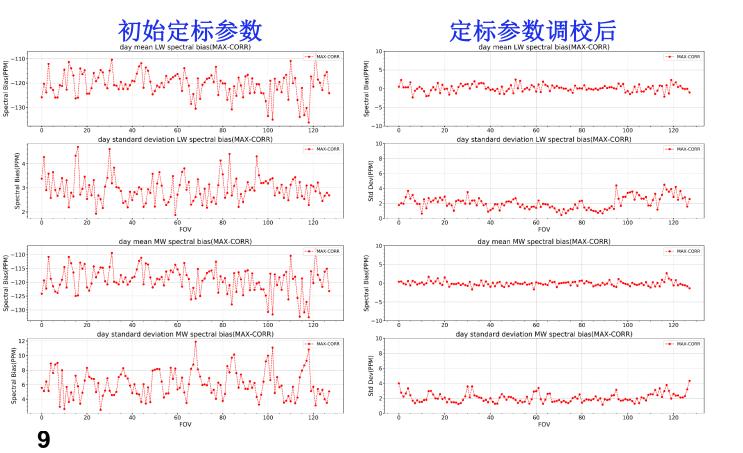
- 高精度日地距离因子计算:建立了高精度日地距离因子算法
- 通过定标门步进步数实现了比辐射计观 测太阳数据精确获取,确保了漫板定标 结果准确

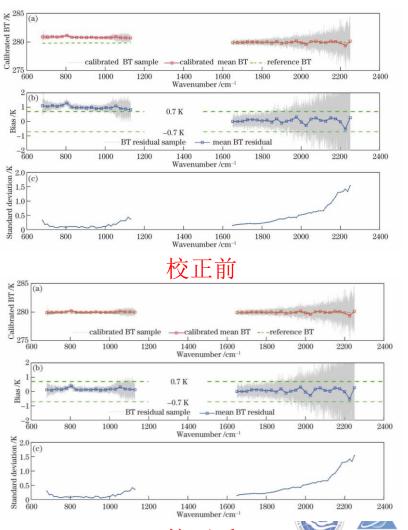
静止轨道漫反射板定标观测时刻精准预报

不同于极轨卫星,静止轨道气象卫星需要进行定标时刻预报,目前预报算法偏差在±6秒以内,满足漫反射板定标观测需求。

133° E 春分调头前

──中间时刻 ──开始时刻

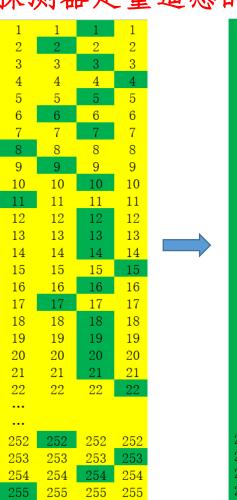



二、 FY4B 预处理关键技术攻关

克服了发射前光谱定标参数不准确的问题,制订了合理的在轨 调整策略,收到了良好的定标效果。

根据光谱定标相对偏差形成的物理机制,构建出定标偏差随采样激光波长和光轴偏离角度的校正模型。

长波波段非线性校正

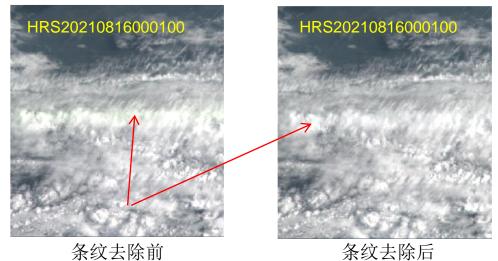


FY4B 预处理关键技术攻关

快速成像仪

GHI红外通道多列探元优选,解决多元 探测器定量遥感的一致性问题。

- □ 快速成像仪实现像元在轨优选
- 要求探测器多列排布
- 从根本上解决多探元一致性
- 根据在轨情况筛选应用
- 建立了初步筛选方法

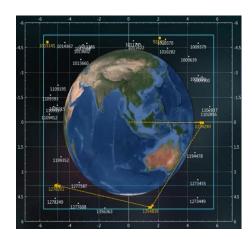

✓ 有效去除盲元、热元、高噪 声元等,提高探测器一致性

探元优选前

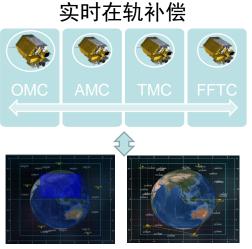
探元优选后

条纹去除

条纹去除前



三、FY4B 预处理关键技术攻关


星地一体化图像导航技术

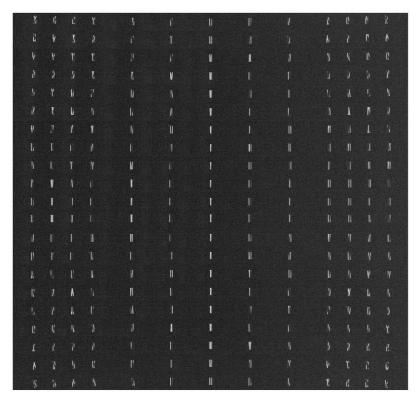
针对三轴稳定静止气象卫星遇到的在轨热形变影响、姿控基准、标称图像观测设计等难点,设计了星地一体化协同在轨实时指向补偿体系。

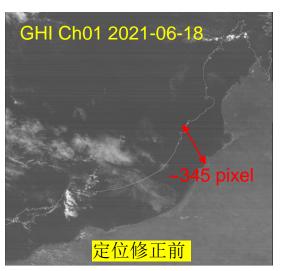
攻关了恒星观测、热形变确定、在轨补偿等一系列关键技术, 达到了国际同类气象卫星的先进水平。

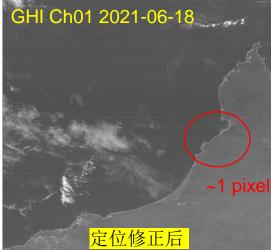
恒星观测策略设计

地面指令规划

星地一体化工作流程 卫星 轨道补偿 载荷 姿态补偿 成像仪 热变形补偿 探测仪 前馈力矩补偿 NRS 观测策略与 指令生成 恒星质心提取 热变形解算 定位与配准

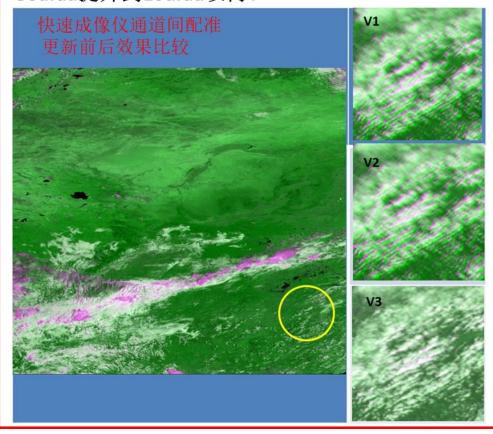



星地一体化图像导航技术

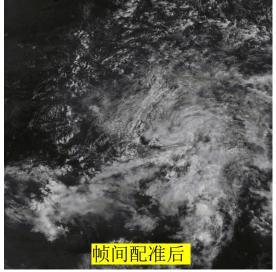

FY-4B快速成像仪长线阵高精度定位

长线阵成像几何畸变

针对FY4B新增载荷快速成像仪,长线阵探测器及 全新扫描方式对图像定位、配准与重采样带来了极大 地困难,研制了全新的图像定位与配准原型算法。



三、FY4B 预处理关键技术攻关


高精度图像配准技术

基于在轨对地和对月观测数据,利用互相关方法计算了快速成像仪通道间配准参数,配准精度从36urad提升到10urad以内。

完成星地全链路被动遥感高精度图像配准技术,大幅提升配准精度。

四、 FY4B预处理系统运行情况

任务处理量

成像仪:日均189个全圆盘+恒星观测任务;

探测仪: 日均528个地标+区域+恒星观测任务; 快速成像仪: 日均1567个地标+区域+恒星+

黑体观测任务。

观测指令参数

成像仪:日均2461条观测指令参数;探测仪:日均3494条观测指令参数;

快速成像仪:日均6840条观测指令参数。

数据时效性

L1A数据的计算时效性优于数据获取时间。

四、FY4B预处理系统运行情况

CVS系统运行成功率: 99.92 % (统计时长20230501-20230718)

- 1. AGRI共处理4655个任务,成功运行4646个任务,成功率99.81%;
- 2. GHI共处理46550个任务,成功运行46532个任务,成功率99.96%;
- 3. GIIRS 共处理21021个任务, 成功运行21021个任务,成功率 100%。

任务处理量

*CVS业务产品包括L1-HDF、L1-广播、L1B、OBC及

图片等:

成像仪:日数据量约3470个;

探测仪:日数据量约6500个;

快速成像仪:日数据量约4740个。

数据时效性

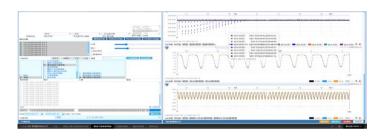
成像仪: L1生成时效约80s;

探测仪: L1生成时效约60s;

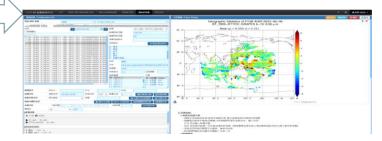
快速成像仪: L1生成时效约60s。

三、 FY4B预处理系统运行情况

L1质量信息发布平台:

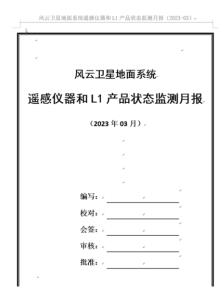

http://10.25.10.15:7001/main

交互分析平台

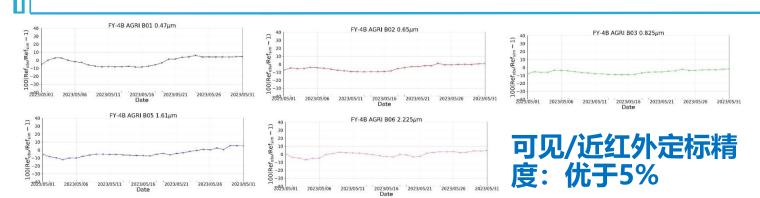


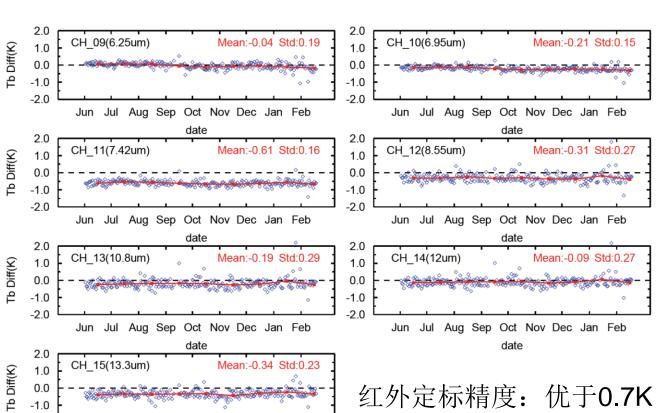
- ▶ 仪器参数+模拟参考源+观测参考源
- ▶ 准实时业务数据处理
- > 交互分析绘图功能
- ➤ 提供L1产品质量月报

● 仪器参数监测:3个仪器全覆盖+ 交互分析


● 模拟参考源监测:多源、多模式、多维度数据分析

● 观测参考源监测: 多星、多角度数 据分析

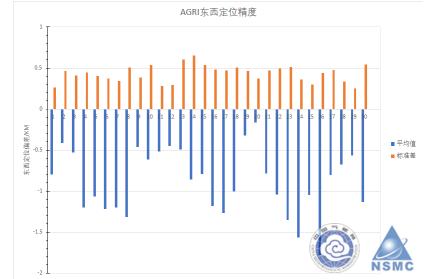

月报



信息发布平台

FY4B预处理系统运行情况

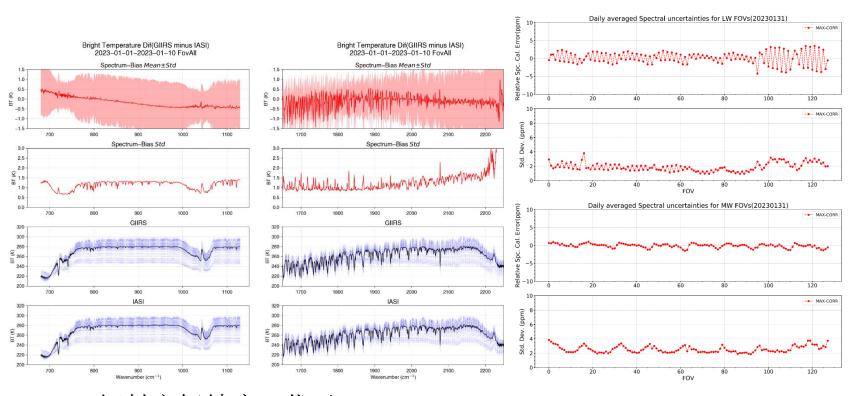



-1.0

Jun Jul Aug Sep Oct Nov Dec Jan Feb

成像仪定标精度与定位精度

定位精度:优于3km



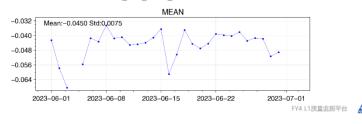
三、 FY4B预处理系统运行情况

可见/红外定标精度: 优于5%

辐射定标精度: 优于1K

光谱定标精度: 优于7ppm

定位精度:优于4km



快速成像仪定标精度与定位精度

可见/红外定标精度: 优于5%

Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B_GHI_FY4B_AGRI. Channel06

Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B_GHI_FY4B_AGRI_Channel05

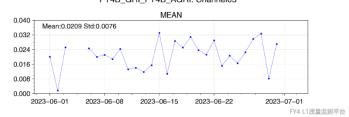


Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B GHI FY4B AGRI. Channel04

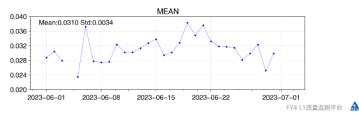


Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B_GHI_FY4B_AGRI. Channel03

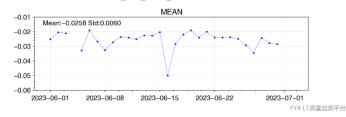


Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B_GHI_FY4B_AGRI. Channel02

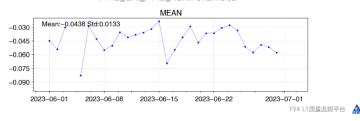
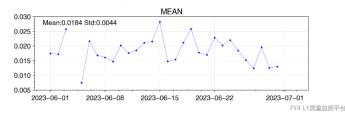
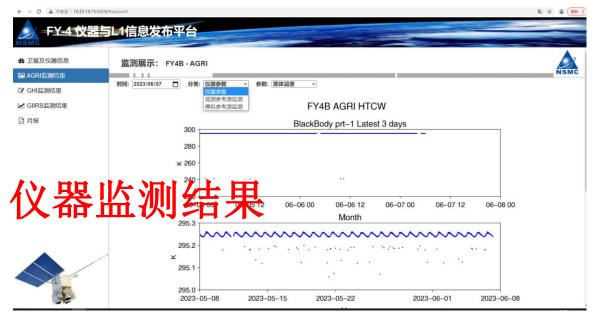



Diagram of Reflectance (PDIF FY4B_GHI/FY4B_AGRI-1) 2023-06-01~2023-07-01 FY4B_GHI_FY4B_AGRI. Channel01

定位精度: 优于2km



\equiv

、FY4B预处理系统运行情况

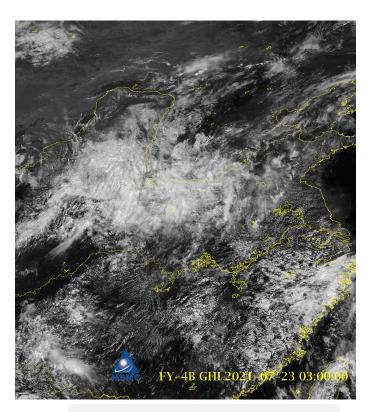
L1质量信息发布平台:

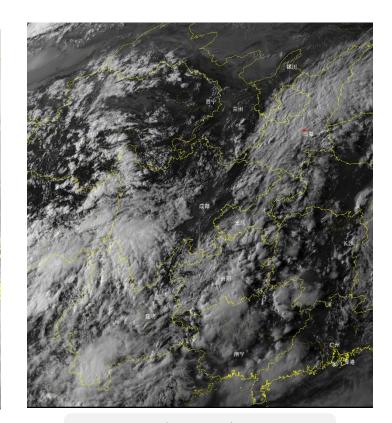
http://10.25.10.15:7001/main

← → C A 不安全 10.25.10.1	5,0006/#second1 器与L1信息发布平台	\$P ☆ ② (東州 E)
● 卫星及仪器信息■ AGRI监测结果☑ GHI监测结果☑ GIIRS监测结果	FY4B- 医量月接下载 - FY4B. 道感仪器和L1产品状态监测月报-202304.pdf - FY4B. 道感仪器和L1产品状态监测月报-202303.pdf - FY4B_ 道感仪器和L1产品状态监测月报-202302.pdf	
2 月报		
	月报下载	रे

仪器	定标精度		定位精度	
汉伯			东西	南北
成像仪	可见/近红 外: <5%	红外: <0.7k	78.4 μrad (3σ)	47.6 μrad (3σ)
探测仪	长波 : -0.31k± 1.83k	中波 : 0.01k± 1.33k	111.8μrad (3σ)	72.8µrad (3σ)
快速成 像仪	通道1-通道6平均偏差 ≤4.45%		53.2 μrad (3σ)	56.0 μrad (3σ)

数据来源: 2023年6月月报





小结

FY4B预处理系统完成三台对地观测载荷定标与定位实时数据自动化处 理及推送,在各个重大气象保障服务中发挥了重要作用。

郑州暴雨

冬奥会

大运会

谢谢

报告人: 杨磊
yangl@cma.gov.cn
国家卫星气象中心
二〇二三年八月

国家卫星气象中心 NCSM (空间天气监测预警中心)