

FY-3E/HIRAS-II 仪器及数据介绍

汇报人:漆成莉 国家卫星气象中心

2022.01.07 中国.北京

仪器性能及数据质量

L1产品及使用指南

仪器典型产品与应用潜力

一、仪器简介-红外高光谱大气探测仪-II型

High Spectral Infrared Atmospheric Sounder 功能指标要求 要求(FY-3E/F/H) 参数 要求(FY-3D) 50.4 度 50.4 度 最大扫描张角 象素/扫描线 28*9 29*4 视场角 1度 1.1 度 星下空间分辨率 14 公里 16公里 扫描周期 **8** s 10 s 焦平面探测器配置 (元) 3×3 2×2 仪器扫描指向精度 0.1 度 0.06 度 FY-3E/HIRAS-II仪器 指向稳定度 0.45毫弧

HIRAS-II 光谱及辐射性能指标要求

ነተርጊ	光谱范围(cm ⁻¹)	光谱分辨率	灵敏度(N	NEΔT@280K)		辐射定标精度 最低要求/期望指标		光谱定标精度(ppm) 最低要求/期望指标	
波段	(FY-3D/E/F/H)	(cm ⁻¹)	FY-3E/F/H		FY-3D	FY-3E/F/H	FY-3D	FY-3E/F/H	FY-3D
			$650 \sim 667 \text{ cm}^{-1}$	0.8K		1K/0.8K			
长波	650 ~ 1168.125	0.625	667 ~ 689 cm ⁻¹	0.4K	0.4K	0.5K/0.4K			
	(15.38 ~ 8.56 µm)		689 ~ 1000 cm ⁻¹	0.2K		0.4K/0.3K			
			1000 ~ 1136 cm ⁻¹	0.4K		0.5K/0.4K	1K	7 ppm	10 ppm
中省	1168.75 ~ 1920	0.625	1210 ~ 1538 cm ⁻¹	0.2K	0.7K	0.4K/0.3K	/0.7K	/5 ppm	/7 ppm
中政	(8.55 ~ 5.21 μm)		1538 ~ 1750 cm ⁻¹	0.3K		0.5K/0.4K			
行计	1920.625 ~ 2550	0.625	2155 ~ 2300 cm ⁻¹	0.3	$1 \ \mathcal{N}$	0.5K/0.4K			
应収	(5.21 ~ 3.92 μm)		$2300 \sim 2550 \text{ cm}^{-1}$	0.5	1.2N	0.6K/0.5K			

FY-3E/HIRAS 与同类仪器的光谱覆盖范围对比

HIRAS开机后仪器状态记录

序号	日期	事件	备注
1	07.05	07:28 (BJT) E星发射成功	
2	07.10	09:05 (BJT) HIRAS开机, 仪器热控待机	
3	10.08	10:27 (BJT) 关辐冷去污加热、关仪器烘烤电压; 黑体 高点温控、仪器10度温控设置。	关烘烤后温度降低,二级辐冷最低降到 78K。
4	10.13	10:40 (BJT) 开干涉仪	有干涉图,开始粗校光校3,信号明显 增强,中波、短波信号对称性改善
5	10.14~10.21	观测、光校;最优的调制效率和灵敏度	
6	10.22~10.25	黑体升降温	
7	11.11	16:00-16:10 (BJT) <mark>冷空扫描</mark> 17:55-18:05 (BJT) <mark>扫描补偿</mark>	检测偏振效应 检验扫描补偿功能
8	11.12~12.17	光校、黑体温度溯源试验、小固定点相变观测试验	

①灵敏度;
 ②光谱定标精度
 ③辐射定标精度
 ④仪器性能稳定性

二、HIRAS-II在轨性能评价:灵敏度

灵敏度 (指标如图红色虚线)

HIRAS-II灵敏度测试结果

HIRAS-II灵敏度与国际同类仪器对比

- 长波所有探元和通道满足要求;
- 中波除1700cm-1区域少量通道灵敏度超指标,其他通道满足要求;
- 短波探元1灵敏度超标,其他探元所有通道满足要求;
- 长波和短波达到国际相当水平。

二、HIRAS-II在轨性能评价:光谱定标精度

光谱定标精度评估 (优于5ppm, 指标要求7ppm)

- ① 选择海洋、晴空像元;
- ② 基于HIRAS晴空海洋像元时间、经纬度,和ECMWF 0.25度X0.25度预报场数据,进行时间空间匹配;
- ③ 时空匹配的ECMWF大气廓线数据,进行LBLRTM辐射 模拟;
- ④ LBL模拟与观测进行光谱比较,评估偏差。

≻ 评估:

- 三个波段所有探元光谱定标平均偏差均优于5ppm;
- 光谱频偏标准差基本优于3ppm;

频偏/ppm	BAND	FOV1	FOV2	FOV3	FOV4	FOV5	FOV6	FOV7	FOV8	FOV9
Mean Bias	LW	-0.80	-0.44	0.98	-1.78	1.69	-3.19	2.74	3.42	1.96
	MW	-1.46	-0.92	1.18	-3.75	-5.04	-3.96	2.16	2.80	-1.22
	SW	4.03	2.57	0.32	2.84	4.55	-3.46	-1.35	3.44	-3.45
Bias Std	LW	1.01	1.14	1.39	1.03	1.14	1.41	1.42	1.15	1.31
	MW	1.51	1.65	2.01	1.35	1.60	1.77	1.78	1.52	1.84
	SW	5.14	1.02	2.44	1.07	1.09	1.97	2.23	1.24	1.84

二、HIRAS-II在轨性能评价:辐射定标精度

- 长波和中波: 650~1500cm⁻¹内通道偏差和标准差优于0.3K,与国际水平相当;
- 中波边缘通道偏差1K以内,标准差1~2K。

二、HIRAS-II在轨性能评价:辐射定标精度

- SNO交叉比对方法评估
- 辐射模拟O-B方法评估
- 同平台成像仪观测评估辐射定标精度
 - ERA5背景场数据模拟结果

- 长波偏差优于0.5K,中波0.5~1K;
- 短波偏差0.5~2K。

- SNO交叉比对方法评估

二、HIRAS-II在轨性能评价:辐射定标精度

- 辐射模拟O-B方法评估 - 同平台成像仪观测评估辐射定标精度

14. 辐射定标精度

- 长波、中波偏差0.2~0.4K,短波偏差约0.7K;
- 长波、中波偏差标准差优于0.4K,短波约1K。

Mean Bias/K	4.05 μm	7.2 μm	8.55 m	10.8 µm	12.0 μm
FOV 1	-0.82	-0.50	0.23	-0.34	-0.32
FOV 2	-0.70	-0.59	0.18	-0.35	-0.32
FOV 3	-0.70	-0.44	0.24	-0.32	-0.30
FOV 4	-0.70	-0.40	0.26	-0.33	-0.31
FOV 5	-0.67	-0.42	0.21	-0.38	-0.36
FOV 6	-0.73	-0.43	0.23	-0.31	-0.30
FOV 7	-0.71	-0.50	0.22	-0.35	-0.34
FOV 8	-0.70	-0.46	0.27	-0.27	-0.25
FOV 9	-0.72	-0.17	0.37	-0.27	-0.24

Bias Std/K	4.05 μm	7.2 μm	8.55 m	10.8 µm	12.0 µm
FOV 1	1.03	0.28	0.29	0.31	0.26
FOV 2	1.03	0.29	0.28	0.36	0.29
FOV 3	1.08	0.25	0.29	0.31	0.26
FOV 4	1.03	0.30	0.28	0.33	0.27
FOV 5	0.92	0.30	0.28	0.41	0.32
FOV 6	1.08	0.28	0.29	0.32	0.27
FOV 7	1.07	0.29	0.29	0.33	0.27
FOV 8	1.00	0.29	0.32	0.49	0.46
FOV 9	1.06	0.27	0.31	0.40	0.36

二、HIRAS-II在轨性能评价:仪器性能稳定性-辐射定标精度

基于辐射模拟偏差长序列结果

二、HIRAS-II在轨性能评价: 仪器性能稳定性-光谱定标精度

FY3 L1质量监测平台

二、HIRAS-II在轨性能评价: 仪器性能稳定性-遥测参数

HIRAS干涉仪组件温度(左图)和扫描电机温度监测图(右图)

二、HIRAS-II在轨性能评价: 仪器性能稳定性-遥测参数

HIRAS激光器头部壳体温度(左图)和黑体温度监测图(右图)

三、L1产品及使用指南-L1产品处理及生成流程

_2.2 全局文件属性。

表 4 FY-3E 红外高光谱大气探测仪 L1 数据全局文件属性定义。

.

编号。	描述	属性名称。	数据类型。	数量。	值。	
1.→ <i>v</i>	卫星名称+	Satellite Name+	8-bit-signed-char+	不定长。	FY-3E	
2.++	仪器名称	Sensor Name.	8-bit-signed-char+	不定长+	High-spectral Resolution Infrared Atmospheric Sounder	
3.+ +	传感器代码	Sensor Identification Code.	8-bit-signed-char.	不定长+	HIRAS	
4.**	数据集名称。	Dataset Name	8-bit signed char.	不定长。	HIRAS [•] L1_FR [•] Data•	
5.≁ +	文件名称:	File Name+	8-bit-signed-char.	不定长+	FY3E_HIRAS_GRAN _L1_YYYYMMDD_ HHmm_014KM_MS. HDF.	
6.++	文件别名:	File-Alias-Name+	8-bit signed char.	不定长+	HIRAS_L1.FR.	
7.+ +	产品生成地。	Responser	8-bit signed char.	不定长+	NSMC+	
8.++	处理软件版本号。	Version Of Software.	8-bit-signed-char.	不定长。	V-1.0.	
9.++	处理软件更新日期。	Software Revision Date.	8-bit-signed-char.	不定长+	YYYY-MM-DD.	
10.++	定标参数版本号。	Version Of Calibration	8-bit-signed-chare	不定长+	V*1.0+	
11.**	定标参数更新日期+	Calibration Parameter Revision Date	8-bit-signed-chare	不定长+	YYYY-MM-DD.	
12:**	数据观测开始日期 (年月日)~	Observing Beginning Date.	8-bit-signed-char+	不定长+	YYYY-MM-DD.	
13:**	数据观测开始时间 (时分秒毫秒)。	Observing Beginning Time+	8-bit signed char.	不定长。	Hh:mm:ss.sss.	
14:**	数据观测结束日期 (包括年月日)。	Observing Ending Date.	8-bit signed char.	不定长+	YYYY-MM-DD.	
15.++	数据观测结束时间 (包括时分秒毫秒)。	Observing Ending Time,	8-bit-signed char.	不定长+	Hh:mm:ss.sss	

□ 三、L1产品及使用指南-L1产品数据格式

编号	描述	届性夕政	教报类刑	粉品	值。
आग उ <i>न</i> 1.≁ न	时序出错扫描线数。	Count_TimeSeqErr_scnl	32-bit signed	SX He	
2.* +	定标失败扫描线数。	Count_CaliErr_scnlines.	32-bit signed	1.	بو لو
3.≁ ₽	定位失败扫描线数。	Count_GeolErr_scnlines.	32-bit signed	1.	لھ
	T				
4.++	非线性系数。	Nonlineary_coefficients+	32-bit float -	27+	i.
5.++	稳频激光器有效波长。	Laser_wavelength.	32-bit float.	3.,	÷
6.≁ ₽	每幅扫描线数。	Count_Scans_Granule	32-bit signed Integer.	1.	37+
7.++	每条扫描线上总驻留步 数。	Count_Total_Steps_PerL ine	32-bit signed. Integer.	1.	36.
8.++	每条扫描线上对地观测 步数。	Count_Earth_Steps_Per Line	32-bit signed Integer.	1+	28+
9.++	每条扫描线上内黑体观 测步数。	Count_ICT_Steps_PerLi ne-	32-bit signed Integer.	1.	2.
10.**	每条扫描线上冷空观测 步数。	Count_CS_Steps_PerLin e-	32-bit signed Integer.	1.	2.
11.24	每步观测包含的探元数。	Count_Fovs_PerStep*#	32-bit signed Integer.	1.	9.
12:**	波段数-	Count_Bands.	32-bit signed Integer.	1.	3.0
13.*•	干涉仪的摆扫方向数。	Count_Sweeps.	32-bit signed- Integer.	1.	2.0
14.**	未切趾通道数目。	Count_Channels_Ua	32-bit-signed- Integer-	3.	834,1207,10 2+
15.*+	切趾通道数目。	Count_Channels_a.	32-bit-signed- Integer-	3.	830,1203,100

Ⅲ 三、L1产品及使用指南-L1产品数据格式

		科学数据集	
分组名称	科学数据集名	科学数据集英文描述	科学数据集中文描述
	Daycnt	Day Count of Observation Time from 12:00 am, 2000.1.1, UTC	观测时间天计数,自世界时2000年1月 1日中午12:00开始计数
	Mscnt	Millisecond Count of Observation Time from 12:00 am of Each Day in UTC	观测时间毫秒计数,自世界时每天的 中午12:00开始计数(对地观测从 FOR0~FOR28)
	Latitude	Latitude of FOV on WGS84	FOV的WGS84大地纬度
	Longitude	Longitude of FOV on WGS84	FOV的WGS84大地经度
Geolocation	Altitude	Altitude of FOV on Earth Topographybased on Digital Elevation Model	FOV的经地形校正后的大地高度,地 球模型由DEM确定
	Solar_Azimuth	Solar Azimuth Angle	太阳方位角
	Solar_Zenith	Solar Zenith Angle	太阳天顶角
	Sensor Azimuth	Sensor Azimuth Angle	仪器方位角
	Sensor Zenith	Sensor Zenith Angle	仪器天顶角
	LandSeaMask	Land Sea Mask	海陆掩码
	Land Cover	Land Cover	地表覆盖类型
	ES RealLW	Earth Scene LWIR Real Radiance Spectrum	对地观测长波实部辐射
	ES_RealMW1	Earth Scene MWIR1 Real Radiance Spectrum	对地观测中波1实部辐射
	ES_RealMW2	Earth Scene MWIR2 Real Radiance Spectrum	对地观测中波2实部辐射
	ES_ImaginaryLW	Earth Scene LWIR Imaginary Radiance Spectrum	对地观测长波虚部辐射
	ES_ImaginaryMW1	Earth Scene MWIR1 Imaginary Radiance Spectrum	对地观测中波1虚部辐射
	ES_ImaginaryMW2	Earth Scene MWIR2 Imaginary Radiance Spectrum	对地观测中波2虚部辐射
Data	DS_NEdN_LW	Deep Space LWIR NEdN Spectrum	冷空观测长波噪声估计
Data	DS_NEdN_MW1	Deep Space MWIR1 NEdN Spectrum	冷空观测中波1噪声估计
	DS_NEdN_MW2	Deep Space MWIR2 NEdN Spectrum	冷空观测中波2噪声估计
	ICT_NEdN_LW	ICT LWIR NEdN Spectrum	黑体观测长波噪声估计
	ICT_NEdN_MW1	ICT MWIR1 NEdN Spectrum	黑体观测中波1噪声估计
	ICT_NEdN_MW2	ICT MWIR2 NEdN Spectrum	黑体观测中波2噪声估计
	Spectral_Resolution	Spectral Resolution in 3 bands	光谱分辨率
	WL_LW	LW Wavenumber	长波波数
	WL_MW1	MW1 Wavenumber	中波1波数
	WL_MW2	MW2 Wavenumber	中波2波数
	QA_flag_Scnline	Scan Line Quality Flag	扫描线质量标识字
QA	QA_tlag_Process	Processing Quality Flag	处理过程质重标识
	LOA Score	E Earth Observation Quality Score	- 观测质菌形分

•2.4 科学数据集

Band Name+

SDS-1. + SDS 名称。	数据类型。	维数。	数据量 (字节)。
Dayent。 观测时间天计数。	Uint-16.	[Nscan, Nstep] **	$Nscan \times Nstep \times 2 \cdot_{*}$
SDS·属性名。	数据类型+	数量。	Value.
Units+	String.	1	Day.
Valid Range	Uint16.	2.	7670,25970+
Fill-Value,	Uint16+	1+'	65535 ₄
Long·Name.	String.	1.0	Day Count of Observation Time.
Slope	Float32+	1+/	1.0
Intercept.	Float32+	1+'	0.0+/
Band Name+	String.	1.0	· None+
Description.	String-	1.	Day count of earth observation time from 12:00 am, 2000.1.1, UTC for each FOV
SDS 2. SDS 名称	数据类型。	维数。	数据量(字节)。
Mscnt。 观测时间毫秒计数。	Uint [*] 32 _*	[Nscan, Nstep].	$Nscan \times Nstep \times 4 \cdot v$
SDS·属性名。	数据类型。	数量。	Value.
Units.,	String.	1	milliseconds
Valid-Range+	Uint-32+	2.	0, 86400000↔
Fill-Value+	Uint 32+	1+	4294967295+
Long-Name+	String.	1.	Millisecond Count of Observation Time
Slope+'	Float32+	1.	1,4
Intercept.	Float32+	1 0.0	

1+

String.

None+

表 6 FY-3E 红外高光谱大气探测仪 L1 数据科学数据集(SDS)定义。

.

三、L1数据产品介绍及使用指南-L1产品使用说明

• 目.录 1. 引言... 3. 风云三号 E 星红外高光谱大气探测仪-II 型。 1.1·文档概述。 ¥ 3. 1.2·依据文件.... 4 4 e) 2. 仪器介绍. L1 产品使用说明。 3. L1 产品处理简介..... 6. 31.概述 4 6 (V2.3) 3.2·产品处理...... + 4.·数据简介______ 4.1·文件基本信息。 + 8. 4.2·核心科学数据集... * 10. 42.1·辐射数据集. .4 . 10. 4.2.2·地理定位数据集.... 3 .13. 5. 光谱响应函数...... 17. 6.数据服务 18 国家卫星气象中心。 2021年06月 ...分节符 (下一页)

HIRAS-II L1产品单个文件为5分钟块,每天生成288个 文件。HIRAS-II L1产品以HDF5文件格式存储,文件命 名为:

FY3E_HIRAS_GRAN_L1_YYYYMMDD_HHmm_014K M_Vn.HDF

其中,FY3E代表卫星名称,HIRAS代表仪器名称, GRAN代表数据区域类型,L1代表数据级别, YYYYMMDD为观测起始日期,HHmm为观测起始时间, 014KM代表空间分辨率,Vn为数据版本信息,n用0-9 数字标识版本号。

FY-3E/HIRAS-II的FR L1产品规格

		光谱分辨率 (cm ⁻¹)	MPD (cm)	通道数目	
波段	光谱范围 (cm -1)	FR	FR	未切趾	切趾
长波	650 ~1168. 125	0.625	0.8	834	830
中波	1168.75~ 1920	0.625	0.8	1207	1203
短波	1920. 625 ~2550	0.625	0.8	1012	1008

FY-3E/HIRAS-II L1数据维数说明

名称	数值	说明
Nscan	37/38	扫描线数
Nfor	28	对地驻留探测步数
Nfov	9	每个探测包含的探元数
Nband	3	波段数
Ndir	2	干涉仪的摆扫方向数
Nstep	36	每条扫描线上总的驻留步数
Nlw_Ua	834	未切趾长波通道数目,起始波数为 648.75cm ⁻¹ ,结束波数为1136.25 cm ⁻¹ ,光 谱分辨率为0.625 cm ⁻¹
Nlw_a	830	用户切趾后长波通道数目,起始波数为 650cm ⁻¹ ,结束波数为1135,光谱分辨率为 0.625 cm ⁻¹
Nmw1_Ua	1207	未切趾中波1通道数目,起始波数为 1208.75cm ⁻¹ ,结束波数为1751.25 cm ⁻¹ ,光 谱分辨率为0.625 cm ⁻¹
Nmw1_a	1203	用户切趾后中波1通道数目,起始波数为 1210cm ⁻¹ ,结束波数为1750 cm ⁻¹ ,光谱分 辨率为0.625 cm ⁻¹
Nmw2_Ua	1012	未切趾中波2通道数目,起始波数为 2153.75cm ⁻¹ ,结束波数为2551.25 cm ⁻¹ ,光 谱分辨率为0.625 cm ⁻¹
Nmw2_a	1008	用户切趾后中波2通道数目,起始波数为 2155cm ⁻¹ ,结束波数为2550 cm ⁻¹ ,光谱分 辨率为0.625 cm ⁻¹

4.2.3.1·扫描线质量码。

扫描线质量码数据集名称为 QA_flag_Scnline, 维数为 37(或 38) ×28, 每 条扫描线上每个 FOR 均有一个扫描线质量码, 扫描线质量码意义如下表 7 所示。。

Bit0₊	=1,时间码有跳变且已订正; -
	=0,时间码正确;。
Bit1.	=1, 仪器状态异常(评分=0); •。
	=0, 仪器状态正常;
Bit2+	=-1·黑体温度异常; 。
ب	=0·黑体温度正常;黑体均值为(273~323)
	正常。

表 7•扫描线质量码描述。

• 4.2.3.3 质量评分。

质量评分数据集名称为 QA_Score, 维数为 37(或 38)×28×27, 每条扫描 线上每个波段上 9 个 FOV 均有一个质量评分,评分码为 0 代表不可用数据,评 分码为 100 代表满足质量要求数据。。

4.2.3.2 处理过程质量码。

.

.

÷.

处理过程质量码数据集名称为 QA_flag_Process, 维数为 37(或 38)×28×27, 每条扫描线上每个波段上 9 个 FOV 均有一个质量码,处理过程质量码意义如下 表 8 所示。*

主 8. 办理过程医曼码描述

F .	区 0 处理过性灰重明通处。
Bit0.	=-1·无效干涉图(评分=0); •。
	=0 干涉图正常;
Bit1.	=-1-虚部异常(评分=0);
	=0 虚部正常;
Bit2+	=1.无效黑体温度(正常黑体温度数量。
	<15, 评分=0); 。
	=0 有效黑体温度;。
Bit3,	=1干涉图有尖刺(数目>3,评分=0)。。
	=0 * * 正常~
Bit4-5.	00:定位成功, GPS 定位处理。
	01:定位成功, IOE 定位处理。
	10表示时间码错误导致定位失败(评分
	=0); +
	11:其他因素导致定位失败(评分=0);。
Bit21₊	=1.月亮污染; 。
	=0 没有月亮污染;。
Bit22-Bit26	参与黑体光谱平均的扫描线数(0-30)。
	<15, 评分=0.
Bit27-Bit31.	参与冷空光谱平均的扫描线数(0-30)。
	<15, 评分=0。
18	+

HIRAS仪器预处理L1产品数据已经对离轴光谱形变进行了订正,其通道光谱响应函数为近似理想的Sinc函数形式

sin (π2MPDσ) π2MPDσ

 $Sinc(2MPD\sigma)$

三、L1数据产品介绍及使用指南-L1产品读取

```
HIRAS L1数据读取(python语言版):
```

```
H5_file_in =

'/FY3E_HIRAS_GRAN_L1_YYYYMMDD_HHmm_014KM_Vn.HDF.h5'

H5f = h5py.File(h5_file_in,'r')

H5f.keys()

LW_ES_Real = h5f['Data/ES_RealLW'][:]

LW_WN = h5f['Data/WL_LW'][:]

H5f.close()
```

C语言版

```
#include <hdf5 hl.h>
#include <H5Tpublic.h>
#include <H5LTpublic.h>
void main()
         char filename out[512];
         memset(filename out, 0, 512 *sizeof(char));
         strcpy(filename out,
"C:\\FY3E HIRAS GRAN L1 YYYYMMDD HHmm 014KM Vn.HDF");
         char Groupname[15];
         strcpy(Groupname, "Geolocation");
         char SDSName[3] = \{0\};
         strcpy(SDSName, "LAT");
         float *igm;
         igm = (float *)malloc( 87* 667*2*66*sizeof(float));
         memset(igm, 0, 87* 667*2*66* sizeof(float));
         hid t hFileID = -1;
         hid thGroupID = -1;
         hFileID=H5Fopen(filename, H5F ACC RDONLY, H5P DEFAULT);
         hGroupID = H5Gopen(hFileID, Groupname, H5P DEFAULT);
         int status = H5LTread dataset(hGroupID, SDSname, H5T NATIVE FLOAT, fData);
         H5Gclose(hGroupID);
         H5Fclose(hFileID);
```

读取不同的数据类型: H5T_NATIVE_UCHAR H5T_NATIVE_CHAR H5T_NATIVE_USHORT H5T_NATIVE_SHORT H5T_NATIVE_INT H5T_NATIVE_UINT H5T_NATIVE_UINT H5T_NATIVE_FLOAT H5T_NATIVE_DOUBLE

四、仪器典型产品及应用潜力-数值预报同化应用

数值预报中心: 张华 28

四、仪器典型产品及应用潜力-温湿度廓线

220 230 240 250 260 270 280 290 300 K

A BOTAN TA

90°E

VAR WARS VA

90°E

60°E

 $60^{\circ}N$

30°N

 $30^{\circ}\mathrm{S}$

 $60^{\circ}\mathrm{S}$

90°S

60°N

30°N

30°

60°S

90°S

30°E

atitude

30°E

四、仪器典型产品及应用潜力-大气成分浓度

80° N

40° 3

20° S 40° S 60° S

80° :

O3浓度反演结果: 王雅鹏

四、仪器典型产品及应用潜力-射出长波辐射OLR

回、仪器典型产品及应用潜力-导风产品

导风产品:杨天杭

- 1. FY-3E/HIRAS-II仪器于2021.07~2021.12完成在轨测试, 仪器状态稳定;
- 2. 关键性能指标满足指标要求;
- 3. FY-3E/HIRAS-II可应用于数值预报资料同化、温湿度廓线反演、大气成分反演、射出长波辐射、云检测、导风等产品开发。
- 4. 2022.01之后数据可以提供试用;

欢迎应用FY-3E卫星数据, 提出宝贵反馈意见

联系方式: 漆成莉 qicl@cma.gov.cn