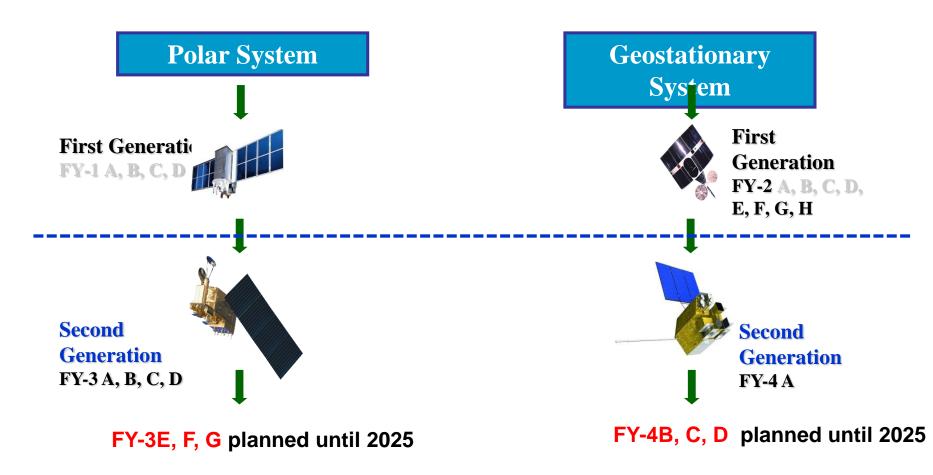


Fengyun Satellites : Current Status, Future Program and Challenge on Quantitative Measurement

Peng ZHANG

National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA)

5th ISCC & 1st FYSUC 12-16 Nov, 2018, Chengdu, China

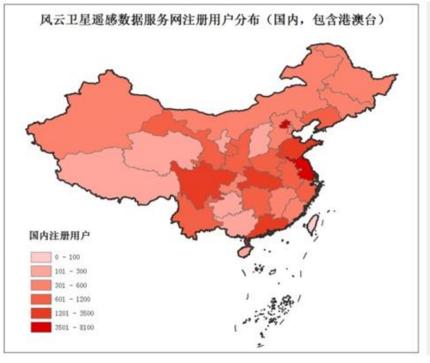


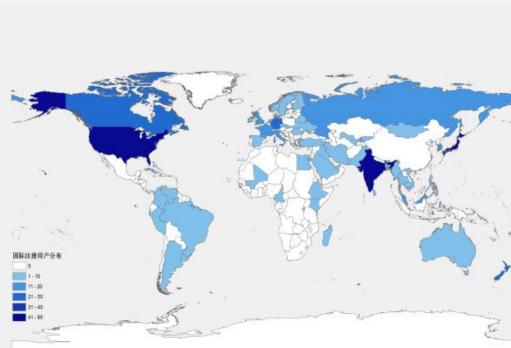
- Fengyun Program Overview
- Current Missions and Services
- Latest Progress
- Future Programs
- Challenge on Quantitative Measurement

Chinese FENGYUN Meteorological Satellites

Launched Satellites

Leo	Launch Data	Geo	Launch Data
FY-1A	Sept. 7, 1988	FY-2A	Jun. 10, 1997
FY-1B	Sept. 3, 1990	FY-2B	Jun. 25, 2000
FY-1C	May 10, 1999	FY-2C	Oct. 18, 2004
FY-1D	May 15, 2002	FY-2D	Dec. 8, 2006
FY-3A	May 27, 2008	FY-2E	Dec. 23, 2008
FY-3B	Nov. 5, 2010	FY-2F	Jan. 13, 2012
FY-3C	Sept. 23, 2013	FY-2G	Dec. 31, 2014
FY-3D	Nov. 15, 2017	FY-4A	Dec. 11, 2016
		FY-2H	Jun. 5, 2018


Overall Development Strategy (4 stages):


- **1) 1970 1990:** Conducting satellite research and development
- 2) 1990 2000: Implementing transition from R&D to operational
- **3) 2000 2010:** Implementing transition from 1st generation to 2nd generation
- 4) 2010 2020: Pursuing accuracy and precision of satellite measurements

Web-based User Location (Domestic)

Web-based User Location (International)

Country: > 90

International User Community

About Forecasts Computing Research Learning LogIn

II =

ECMWF starts using Chinese satellite data

29 September 2014

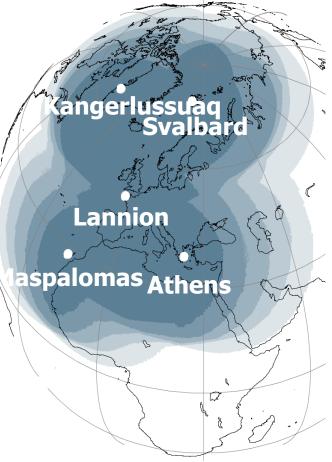
What we do obs News centre Suppliers

Who we are

Contact us

On 24 September 2014, ECMWF actively used Chinese satellite data for the first time in the operational forecasting system. This marks a milestone in ECMWF's fruitful cooperation with the Chinese Meteorological Administration (CMA) and the Chinese Institute of Atmospheric Physics (IAP) in the area of characterisation and use of Chinese satellite data. China is expected to play a leading role in providing meteorological satellite data in the near future, alongside Europe and the US, currently the main

providers of satellite sounding data used operationally. Activating the first Chinese satellite data in the ECMWF system is therefore an important step towards a much greater use of Chinese satellite data in the future.

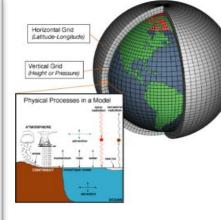

The new data originates from the Microwave Humidity Sounder (MWHS) on-board the Fengyun-3B (FY-3B) satellite. It contributes to an improved analysis of mid- to upper-tropospheric humidity, and adds robustness to the satellite observing system. Although FY-3B is an experimental satellite. the data has been found to be of sufficient quality to further improve ECMWF's atmospheric analysis. Keyi Chen, visiting scientist from IAP, explains: "Our work has shown the data is of reliable quality, and it has an impact comparable to similar European or US satellite instruments that have been used operationally for a long time."

The development is the result of a very constructive partnership with CMA and IAP to characterise Chinese satellite data. During regular visits to ECMWF, Qifeng Lu from CMA has significantly advanced our understanding of the performance of the instruments on the experimental FY-3A and B satellites. This work continues with the analysis of data from the latest Chinese satellite, FY-3C, performed together with CMA, ECMWF, and the UK Met Office. FY-3C is China's first operational meteorological polar-orbiting satellite, and it carries much improved instruments compared to the earlier FY-3A and B satellites. It was launched in September last year and Qifeng Lu is currently

FY-3C sounding data have been assimilated into CMA GRAPES, ECMWF, UK NWP model operationally.

Regional Data

EUMETSAT Advanced **Retransmission Service**


2018/11/22

European Centre for Medium-Range Weather Forecasts

Europhisches Zentrum für richaffringe Weitenschatsage - Centre sumplem proc les polisions mettenschagigues & mouet terme

15 April 2011

Cost Function

$$J = \frac{1}{2} \left(\mathbf{x} - \mathbf{x}^{b} \right)^{T} \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}^{b} \right) + \frac{1}{2} \left[\mathbf{I}(\mathbf{x}) - \mathbf{I}^{o} \right]^{T} \left(\mathbf{E} + \mathbf{F} \right)^{-1} \left[\mathbf{I}(\mathbf{x}) - \mathbf{I}^{o} \right]$$

The data quality is now comparable to that from equivalent US and European meteorological satellites

Ro. The Status of Data from China's FY-3 Satallite in ECMINF's Forecasting System

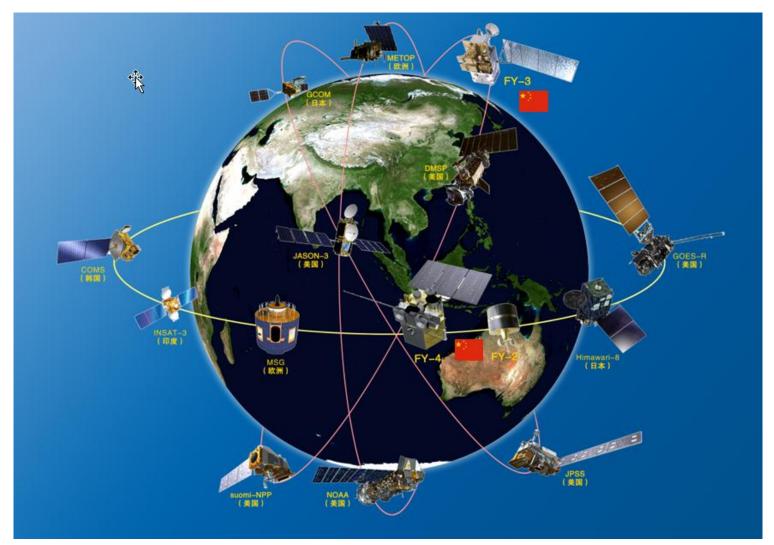
Dear Sn/Madam,

This brief letter outlines the status of ECMWF work on data from the FY-SA Satellite.

Data from the FY-3 series of meteorological satellites is set to become an increasingly inportant component of the global satellite observing system, supporting NVP centres worldwide. As part of a CMA-ECMWF co-operation agreement data from the first satellite in the series, FY-8A, was assessed at ECMWF during 2009-2013. Much of this work was carried out by a visiting scientist from China's National Setzlite Meteorological Center, actively supported by staff from CMA and ECMWF. These grean foreables investigations led to significant improvements in the quality of the data from the FY-3A Microwave Temperature Sounder (MWTS) instrument like data quality for the MYTS instrument is now comparable to that from equivalent US and Europes.

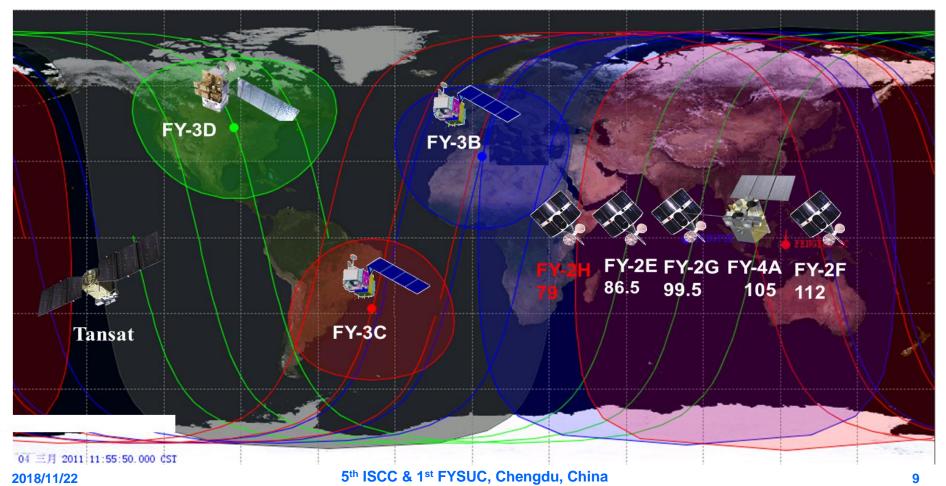
Pre-operational leading has shown the PY-3A data delivers measurable positive Noimprovements in the ECAWF model, a vary stringent test of the data given the global poof the ECAWF forecast system. This represents a significant milestore for the IY-3A program and cooperation with ECAWF. Final pre-operational testing of the PY-3A data is underway and ECMWF plans to use the data operationally in early summer 2011. The adentific work is well documented in a series of Technical Memoranda available from the ECAWF website, and in a serof pursual articles.

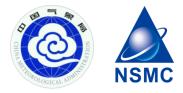
ECNTWF are very appreciative of the support provided by CMA and hope this procollaboration strengthens in order to support the continued success of the FY-3


Yours faithfully,

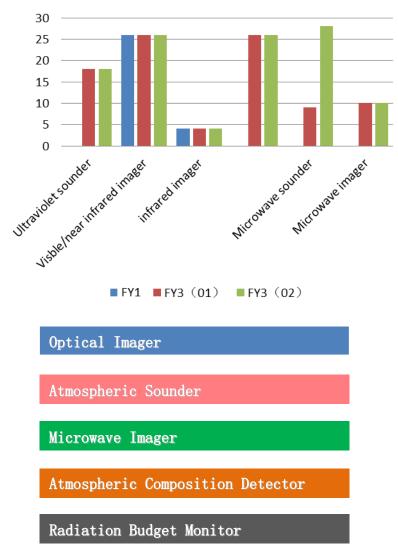
Important Component of WMO Space Program

- reliable and sustained observation in operation
- open data policy to free access




2. Current Missions and Services

Current FengYun Constellation


FengYun Programs: 8 in orbit, 7 in operation, 1 in orbital testing (FY-2H) Joint programs: Tansat, GF-4

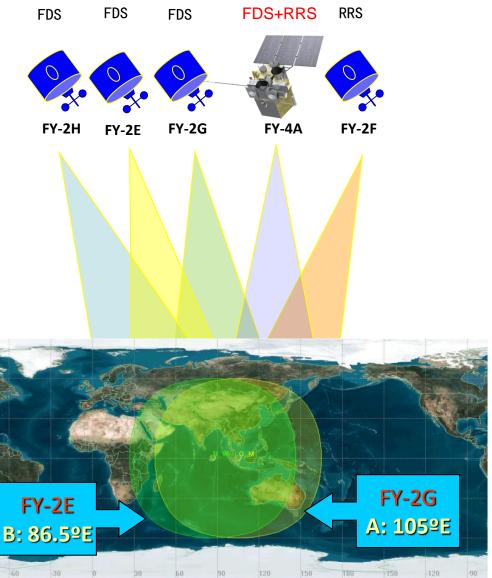
Current Instruments for EO

Satellite		No.	of	Name in Abbrev.
Satem		Instruments	0.	
FY-1	FY-1 A/B	2		5-channel VIRR
	FY-1 C/D	2		10-channel VIRR
FY-2	FY-2 A/B	1		3-channel VISSR
	FY-2 C/D/E	1		5-channel VISSR
FY-3	FY-3 A/B	10		10-channel VIRR
				MERSI
				IRAS
				MWTS
				MWHS
				MWRI
				SBUS
				тои
				ERM
				SIM
	FY-3C	11		GNOSS
	FY-3D	10		HIRAS
				GAS
	FY-4A	3		AGRI
FY-4				GIIRS
				LMI

Fengyun GEO Constellation

4 in operation

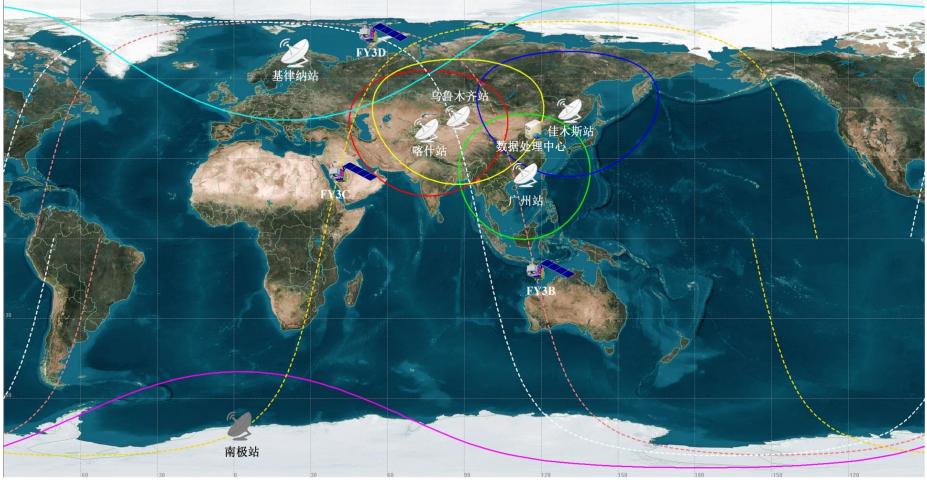
FY-2E: Full Disk (86.5° E)


FY-2G: Full Disk (99.5° E)

FY-4A: Full Disk + Regional Rapid (105° E)

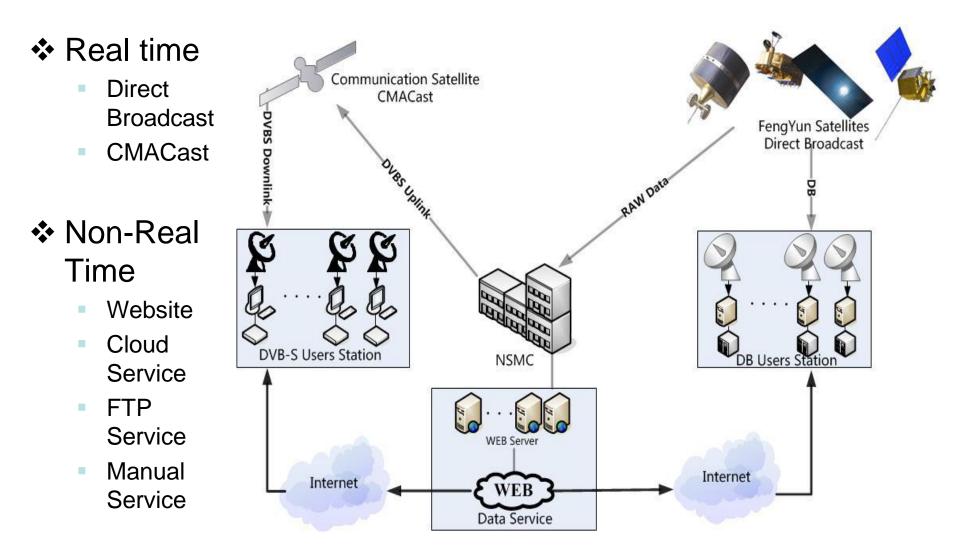
FY-2F: Regional (112° E)

1 in orbit test


FY-2H (79° E)

Fengyun Polar Constellation

In Primary I Operation (Global) : FY-3C + FY-3D, global coverage 4 times per day

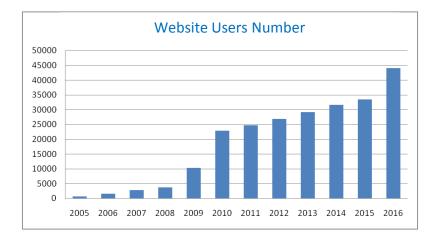

FY-3C LTC 10:30 AM

FY-3D LTC 13:40 PM

זיי ואכט א זיי דאטC, Chengdu, China 5יי ואטטע

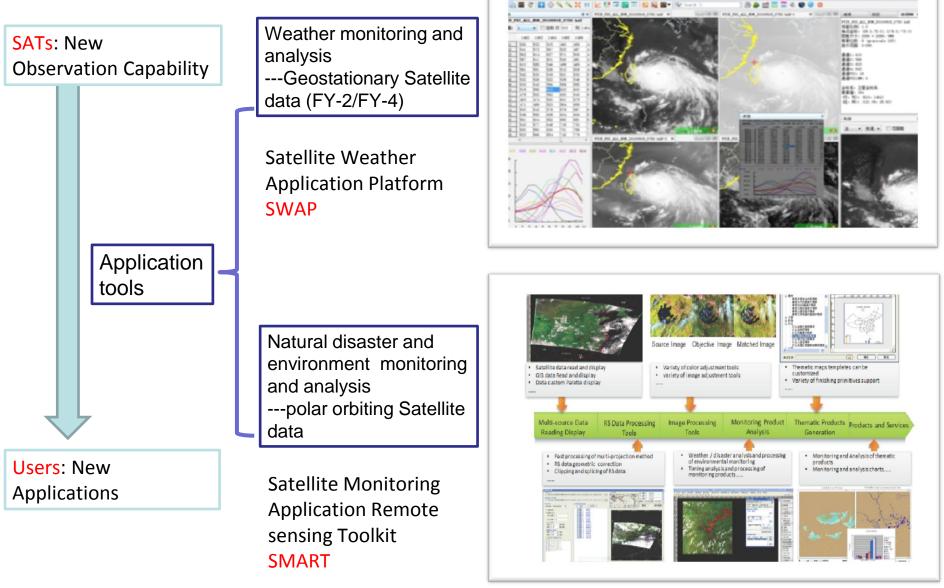
FengYun Satellite Data Service

Fengyun DB Users

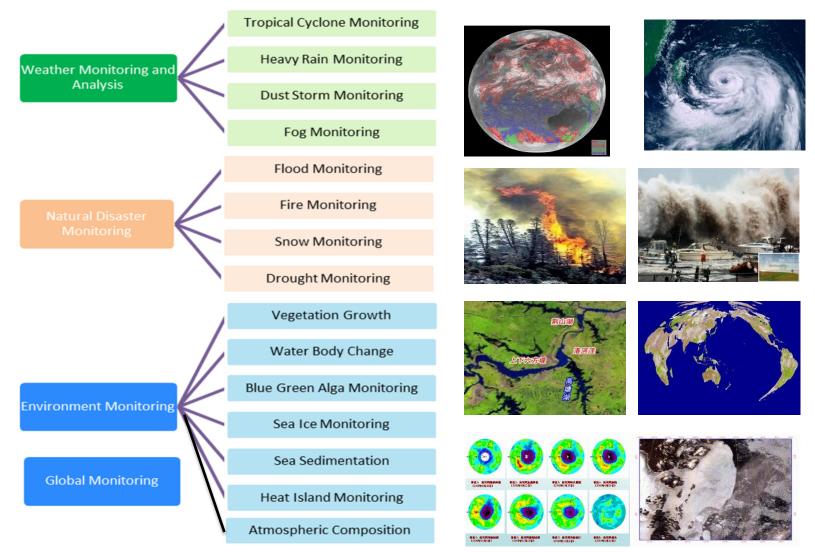


More than 45 International DB Users

Web Portal Service

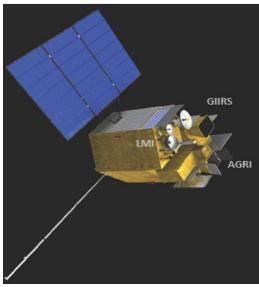


2018/11/1


Application Tools

Application Area

Latest progress on CMA satellite programes


- 1. FY-4A
 - The first GEO. meteorological satellite of new generation
 - Launched on Dec.11, 2016
 - Official operation on May 1, 2018
- 2. FY-2H
 - The last one of FY-2 series
 - Launched on June 5, 2018
 - To support IOC and serve for the belt & road countries

3. FY-3D

- A new operational afternoon orbit LEO. satellite, will co-work with FY-3C in morning orbit.
- Launched on Nov. 15, 2017.
- On-orbit commission test completion on Aug. 6, 2018

FY-4A: Launched on 11 Dec, 2016

FY-4 is the CMA new generation meteorological geo-satellite series, expected to support various weatherrelated services, including weather forecasting, disaster prevention and reduction, and monitoring and warning of space weather.

Spacecraft:

- Launch Weight: approx 5300kg
- 2. Stabilization: Three-axis
- 3. Attitude accuracy: 3"
- 4. Bus: 1553B+Spacewire
- 5. Raw data transmission : X band
- 6. Output power: >= 3200W
- 7. Design life: over 7 years

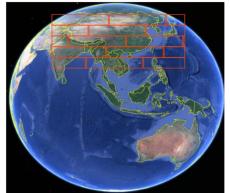
Instrument		Purposes	
	AGRI: Advanced Geosynchronous Radiation Imager	14 -channel Earth images	
	GIIRS : Geostationary Interferometric InfraRed Sounder	Clear-sky atmospheric temperature and humidity profiles	
	LMI : Lightning Mapping Imager	Lightning distribution map in China area	
	SEP: Space Environment Package	Space electric and magnetic environment information	

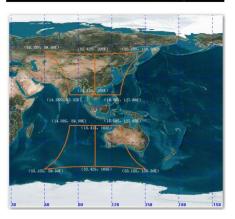
FY-4A observation mode

AGRI:

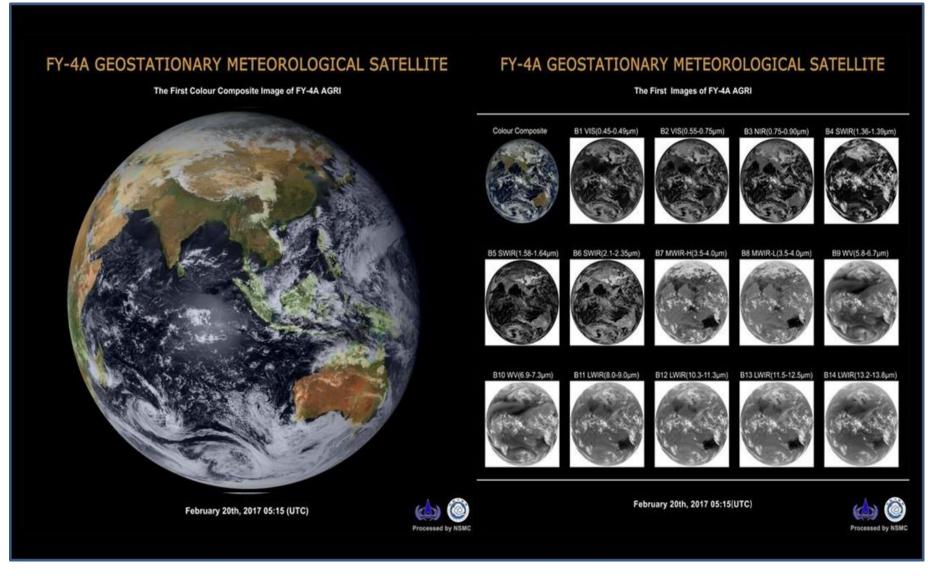
- Every hour: Full disk (00:00/01:00/02:00...23:00)
- Every 3 hour: 3 continuously Full disk(Eg.23:45-00:00-00:15)
- Rest: China area, (every 5 minutes)

GIIRS:

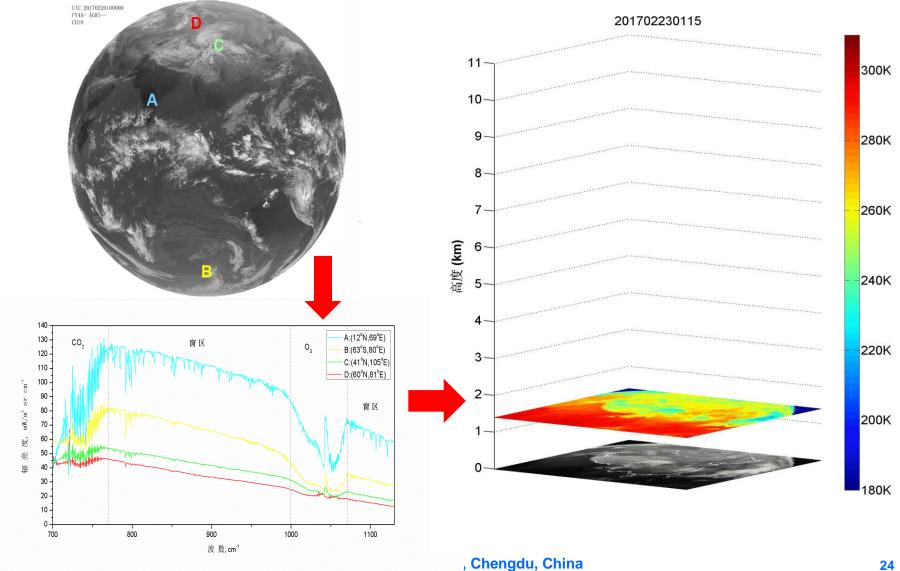

- Every 3 hour: Full disk clear sky observation
- Every 15 minutes: China area clear sky observation


LMI:

- 500 frames per second
- 21 Mar.-22 Sep: Northern Hemisphere
- 22.Sep-Next 21 Mar: Southern Hemisphere

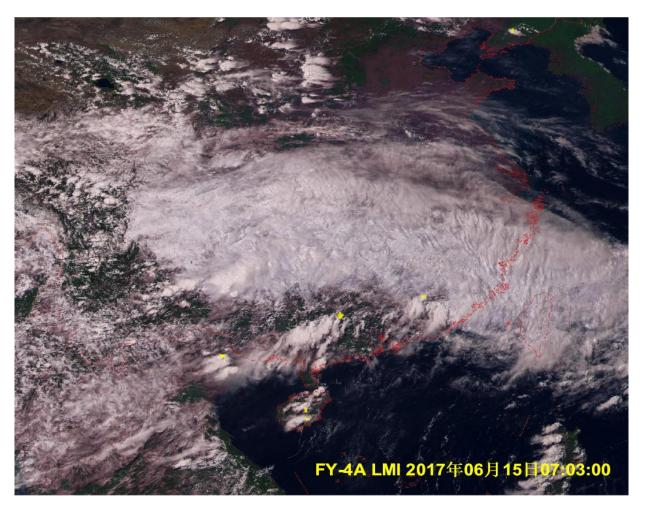

FY-4A Baseline products

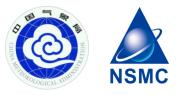
	-	Stoelcvr vn
	FY-4A	FY-2
Cloud	Cloud Mask Cloud Top Temperature Cloud Top Height Cloud Top Pressure Cloud Type Cloud Phase Daytime cloud optical and microphysical properties Nighttime cloud optical and microphysical properties	Cloud Mask Cloud Top Temperature Cloud Classification Cloud Cover Ratio Cloud Total Amount
Atmosphere	Quantitative Precipitation Estimate Layer Precipitable Water Atmosphere Motion Vector Atmospheric Temperature Profile Atmospheric Humidity Profile Cloudy Vertical Temperature Profile Cloudy Vertical Moisture Profile Aerosol Detection Atmosphere Instability Index Convective Initiation Tropopause Folding Turbulence Prediction Total Ozone Amout Ozone Profile	Precipitation Index Quantitative Precipitation Estimate Clear sky Total Precipitable Water Atmosphere Motion Vector Cloudy Vertical Moisture Profile Upper Tropopause Humidity
Radiation	Outgoing Long wave Radiation Surface Solar Irradiance Downward Longwave Radiation Upward Longwave Radiation Reflected Shortwave Radiation	Outgoing Long wave Radiation Surface Solar Irradiance
Surface	Sea Surface Temperature (Skin) Land Surface Temperature Snow Cover Land Surface Albedo Land Surface Emissivity Evapotranspiration products	Sea Surface Temperature (Skin) Land Surface Temperature Snow Cover
Environment	Dust Smoke Detection Fire/Hot Spot Characterization Fog Detection	Dust Index Fire/Hot Spot Characterization Heavy Fog Detection
Lightning	One Minute Lightning Quantitative Product (including flash group event) Lightning Jump Identification Product Flash Daily Density	
Space	High-energy particle distribution Magnetic Field Intensity Space Environment Effect	

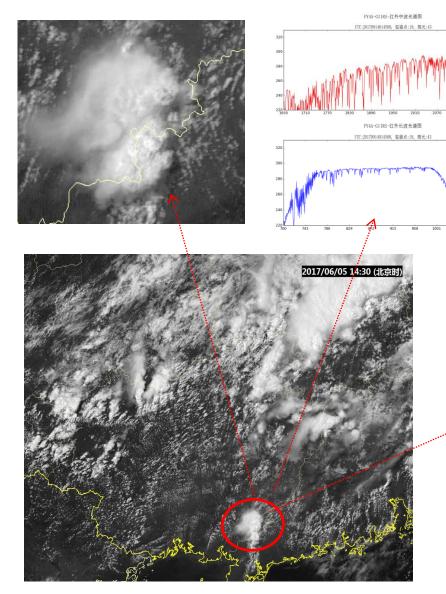

AGRI: Advance Geo. Radiation Imager

2018/11/22

GIIRS: First Geo. Interferometric Infrared Sounder NSMC

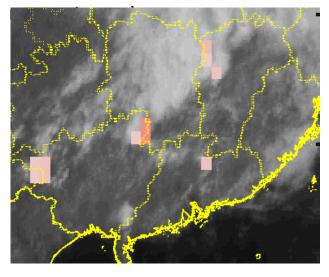

LMI: Lightning Mapping Imager




Acquire lightning distribution maps over specific region

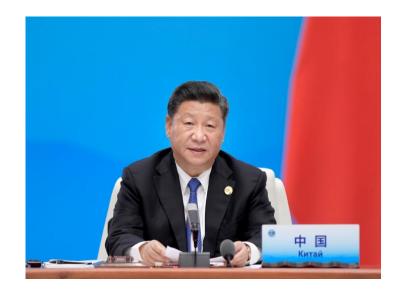
Spatial	about 7.8Km at
resolution	SSP
Sensor size	400×300 ×2
Wave-length at	777.4nm
center	
Band-width	1nm±0.1nm
Detection	>90%
efficiency	
False-alarm ratio	<10%
Dynamic range	>100
SNR	>6
Frequency of	2ms
frames	
Quantization	12 bits
Measurement	10%
Error	

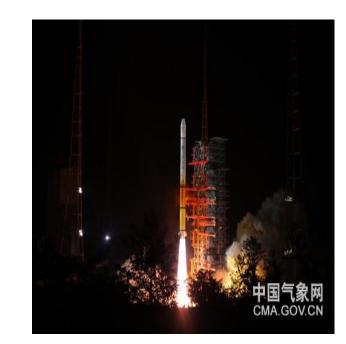
AGRI + GIIRS + LMI



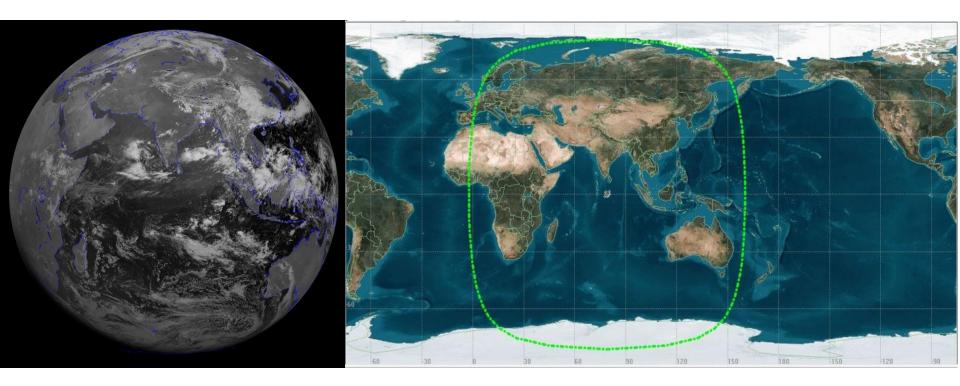
1. FY-4A lightning frequency map: strong convective cloud clusters often acompany with obvious lightnings.

2. FY-4A high spatial resolution imager: finer structure and texture of strong convective cloud cluster; and clearer small scale cumulus line.


3. Cloud free atmospheric profile acquired from GIIRS can be used for

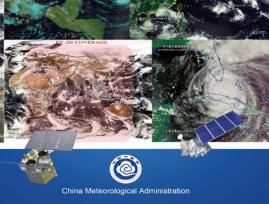

FY-2H: Launched on 5 Jun, 2018

FY-2H : To better support IOC and serve the Belt & Road countries


On June 10, at SCO summit in Qingdao, Chinese President Xi Jinping made a commitment that China will provide meteorological services by using FY-2 meteorological satellite."

- Launched on June 5, 2018
- positioned at 79° E and operational by September, 2018

FY-2H coverage at 79^o E



CMA Announced "Emergency Support Mechanism for International Users of Fengyun Meteorological Satellites in Disaster Prevention and Mitigation" on April 24, 2018

- To serve the countries along the "Belt and Road" in a timely manner. These countries may raise a request for the activation of the mechanism through their respective Permanent Representatives with WMO or their designated focal points.
- Once the request is approved, CMA will command the on-duty FY satellite for frequent and targeted observations per 5-6 minutes over affected areas.
- The images and products will be transmitted to the requesting applicant through CMACast, internet and direct satellite broadcast reception.

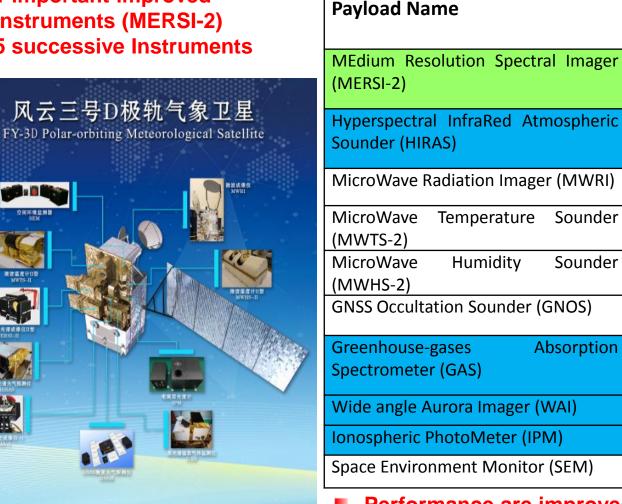
Description of Services under the Emergency Support Mechanism of FENGYUN Satellite (FY ESM)



18 Authorized FY ESM Users

As of September 2018, there are 18 Authorized FY ESM users, including Indonesia, Vietnam, Laos, Myanmar, Thailand, Philippine, Malaysia, Singapore, Kazakhstan, Kyrgyzstan, Pakistan, Russia, Tajikistan, Uzbekistan, Afghanistan, Iran, Mongolia, Sri Lanka

风云卫星国际用户防灾减灾机制授权证书 Authorization of Emergency Response Mechanism for International Users of FengYun Satellites for Disaster Management

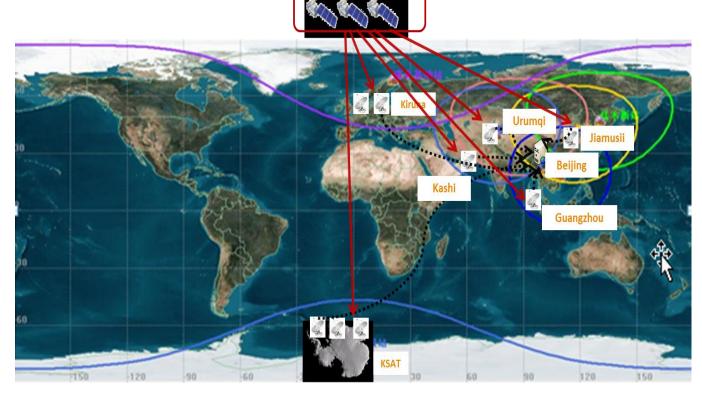


FY-3D: Launched on 15 Nov, 2017

Parameters	Satellite Specification		
Orbit type	Near-polar sun-synchronous		
	orbit		
Orbital altitude	836 Km		
Orbital inclination	98.75°		
Precision orbit	Semi-major axis deviation:		
	$ \Delta a \le 5$ Km		
	Orbital inclination deviation:		
	Δi ≤0.1 [°]		
	Orbital eccentricity ≤ 0.003		
Repeat cycle	5.5d (Design range is in 4-10		
	d)		
Eccentricity	≤0.0025		
Local time drift at	15 min within 4 yrs		
ascending node			
Launch window	local time at ascending node:		
	13:40 - 14:00		
Design lifetime	5 yrs for design, 4 yrs for		
	assessment		

- 4 new instruments (HIRAS, GAS, WAI, IPM)
- **1** important improved instruments (MERSI-2)
- **5** successive Instruments

Payload Name	Channel Numbers with Spectral Coverage		
MEdium Resolution Spectral Imager (MERSI-2)	25 (0.413 – 12 μm)		
Hyperspectral InfraRed Atmospheric Sounder (HIRAS)	1370 (3.92 – 15.38 μm)		
MicroWave Radiation Imager (MWRI)	10 (10.65 – 89 GHz)		
MicroWave Temperature Sounder (MWTS-2)	13 (50.3 – 57.29 GHz)		
MicroWave Humidity Sounder (MWHS-2)	15 (89.0 – 183.31 GHz)		
GNSS Occultation Sounder (GNOS)	29 ()		
Greenhouse-gases Absorption Spectrometer (GAS)	5540 (0.75 – 2.38 μm)		
Wide angle Aurora Imager (WAI)	1 (140 – 180 nm)		
Ionospheric PhotoMeter (IPM)	3 (130 – 180 nm)		
Space Environment Monitor (SEM)	25 ()		


Performance are improved significantly for the key characteristics, such as S/N, calibration accuracy, etc.

- In Orbit testing began on December 12th, 2017;
- the in orbital testing has been finished.
 The results show that the satellite platform and main payloads functions well, and meets the requirements;

Complete summary and review of the in orbit test July 2018 Hand over for trial operation Coct. 2018 Summary for the trial operation before turning into formal operation

Global data latency within 2 hours (80%) less than 1 hour

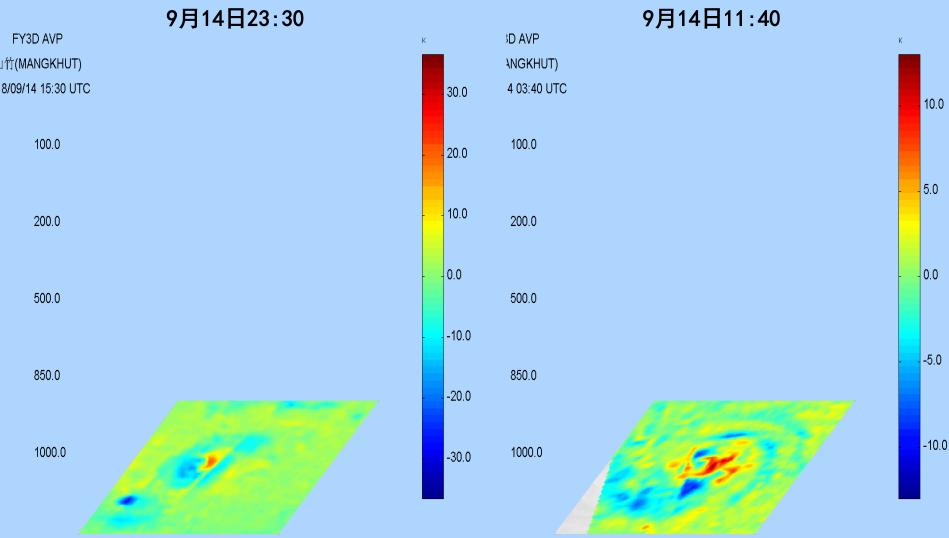
FY-3D Baseline products

Cloud & Radiation	Atmosphere	Land Surface	Sea Surface	Space Weather
Cloud mask, Cloud amount, Cloud type, Cloud phase, Cloud top temperature, Cloud top height, Cloud top height, Cloud optical depth, Cloud optical depth, Cloud physical parameters, Cloud water content, Cloud liquid water, Ice water path, Outgoing longwave radiation	Atmospheric total precipitable water, Dust storm index, Aerosol optical depth, Rain detection, Atmospheric humidity profile (GNOS,VASS), Atmospheric temperature profile (GNOS,VASS), Precipitation, Microwave rain rate, Fog detection	Global fire detection, Land cover, Land surface reflectance, Land surface temperature, Soil moisture, NDVI, Snow cover, Snow cover fraction, LAI, FPAR, NPP, Albedo, Snow depth, Snow water equivalent	SST, Sea-Ice cover, Ocean color, Chlorophyll, Sea surface wind speed	radiation flux of high energy particles, surface electric potential radiation dose, GNOS Electron Density Profile, Ionospheric O/N2 Column Ratio, Aurora Mapping Products

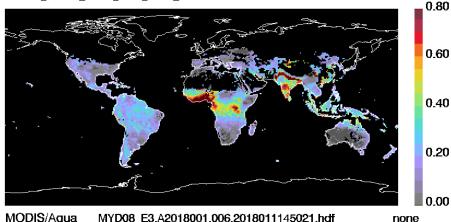
True Color Image in Caribbean Sea from MERSI II with 250m

True Color Image in Arbian Peninsula from MERSI II with 250m

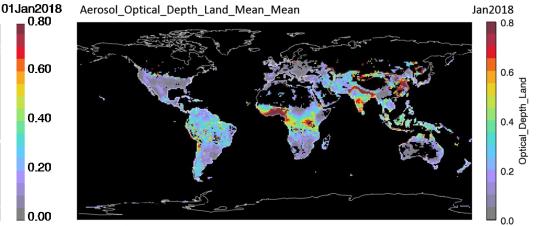
11



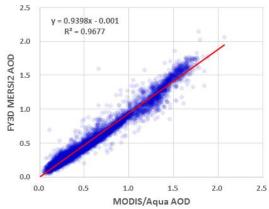
Temperature Profile from HIRAS-MWTS-WMHS



Typhoon Mangkhut (1822) 2 hour before landing 5th ISCC & 1st FYSUC, Chengdu, China

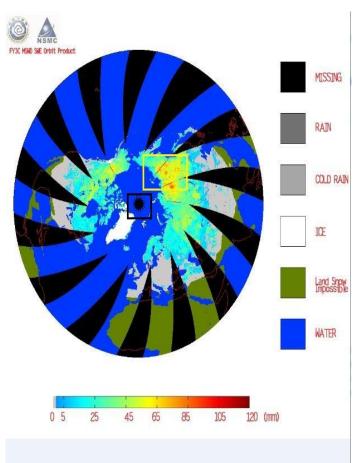

Global 8-day-mean product: MERSI II and MODIS land aerosols

Aerosol Optical Depth Land Mean Mean

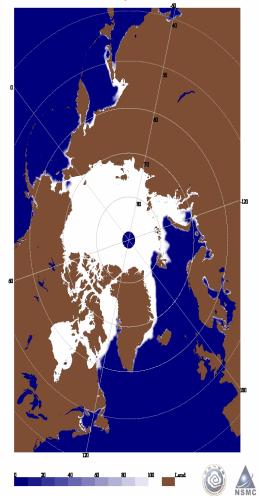

MODIS/Aqua MYD08_E3.A2018001.006.2018011145021.hdf

MODIS/Aqua

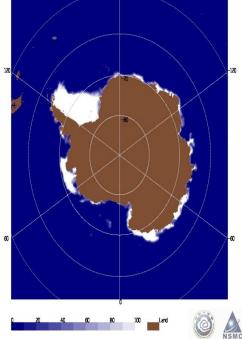
MERSI2/FY3D FY3D_MERAOD_E1d.201801.Beta.hdf



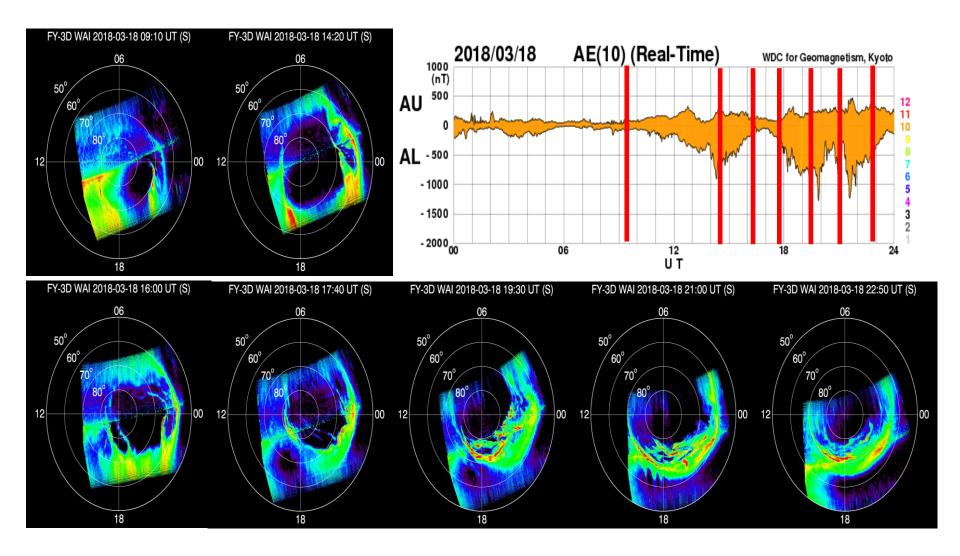
Good consistency in global distribution and AOD of pollution sources.



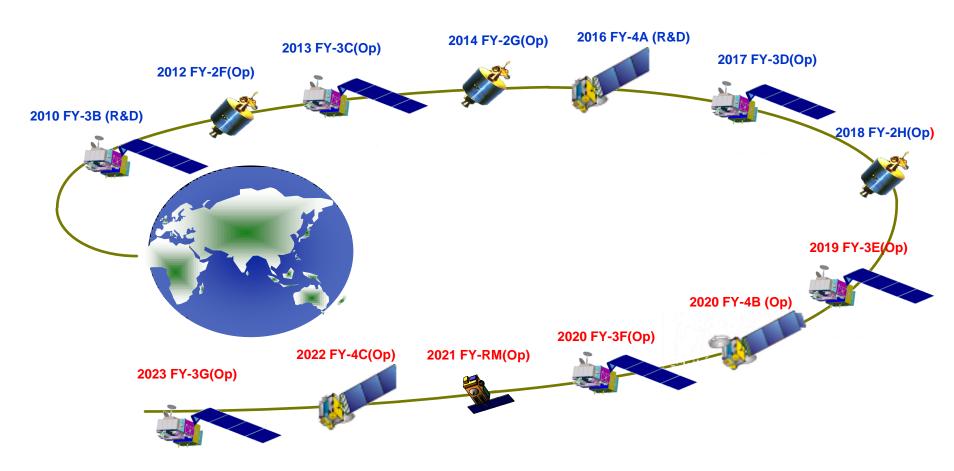
Snow depth/SEW


MWRI Sea ice

FY-3D MWRI SIC North Daily Product: 2018-01-01



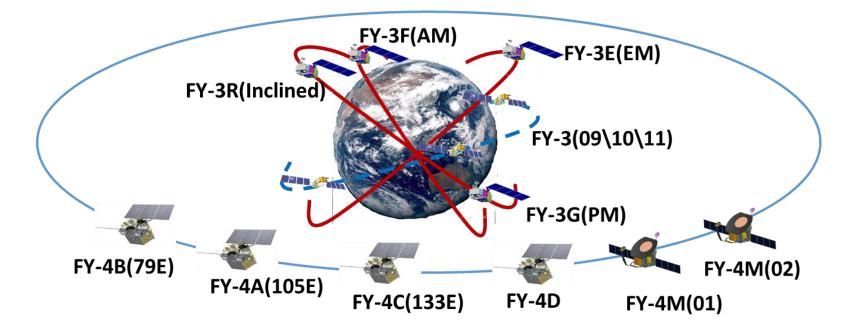
FY-3D MWRI SIC South Daily Product 180



Aurora in the North Polar from WAI

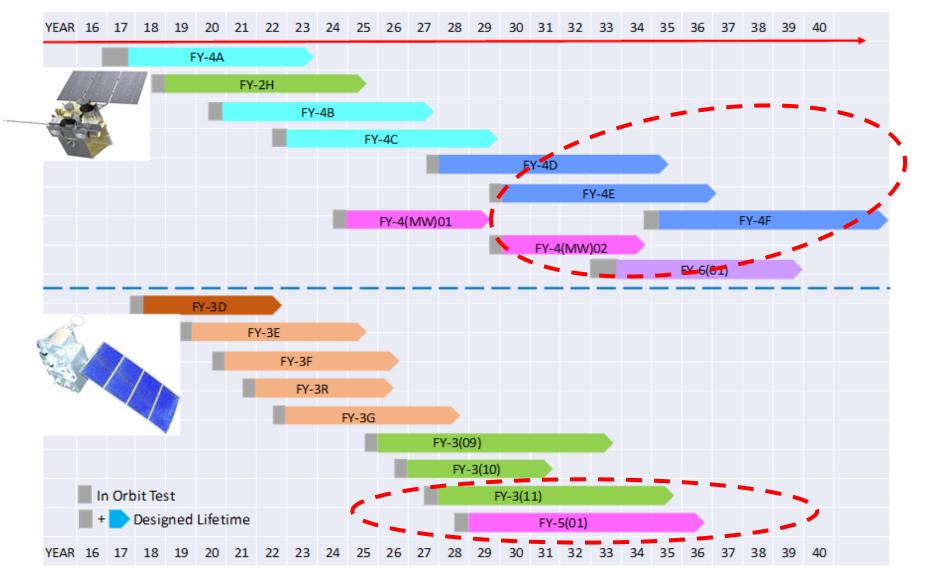
National Program for Fengyun Meteorological Satellite from 2011-2020

6 satellites will be launched within this decade



Satellite	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
FY-4B												
FY-4C												
FY-4(MW)											

In the next 10 years, CMA will have 6 GEO and 7 LEO main operational satellites, which means the updates for the satellite observation network will be completed.



The LEO realizes the network of covering the EM, AM and PM satellite observation, and the time limit of global data updating has been raised from 6 hours to 3 hours. Fine detection of elements such as precipitation and greenhouse gas.

The new pattern of GEO observation: imaging, hyper-spectral and microwave sounding. FY-4B: rapid scan(min), FY-4C: five minutes disk image, sounding abilities, whole disk lightening mapper.

FengYun Vision for Meteorological Satellites Program in 2035

2018/11/22

5. Challenge on Quantitative Measurement

Prospect on Satellite Capability

Improve **High Spatial Resolution** Image Quantity Continued **High Temporal** Resolution Monitoring What we want? Difference **High Spectral Targets** Resolution Quality **Quantitative High Radiometric Resolution Remote Sensing**

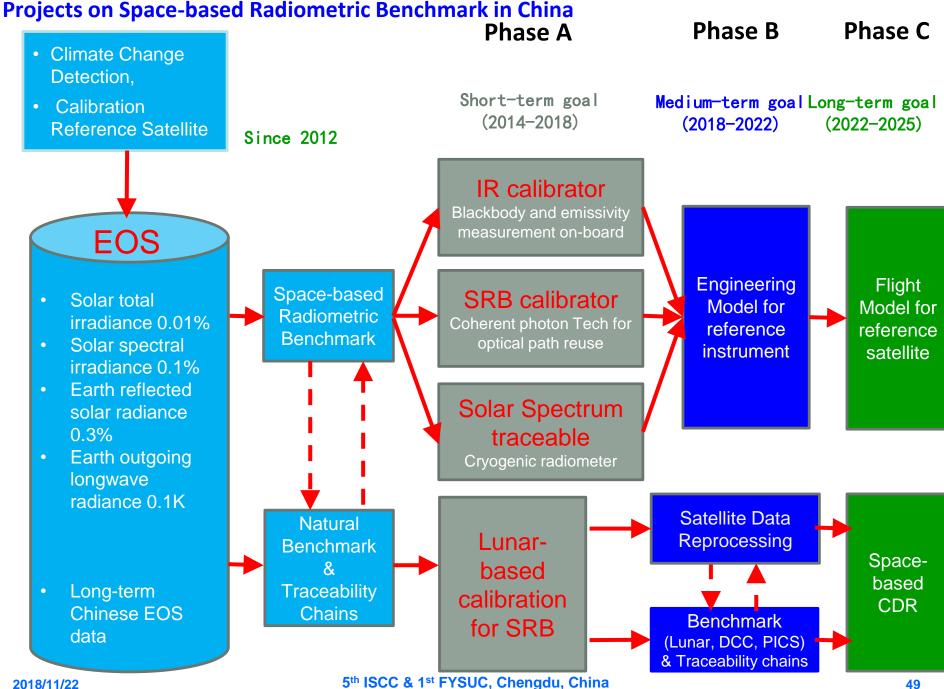
NSMC

^{5&}lt;sup>th</sup> ISCC & 1st FYSUC, Chengdu, China

Projects on Space-based Radiometric Benchmark

Founded by

National High Technology Research & Development Program of China (863 program) before 2018



National Key R&D Program of China after 2018

Goal

- Chinese SI-traceable reference satellite
- Retrospective recalibration of historical Chinese EO satellite data

^{2018/11/22}

49

Phase B (300 million RMB)

CHARLEN TO THE REAL PROPERTY OF THE REAL PROPERTY O

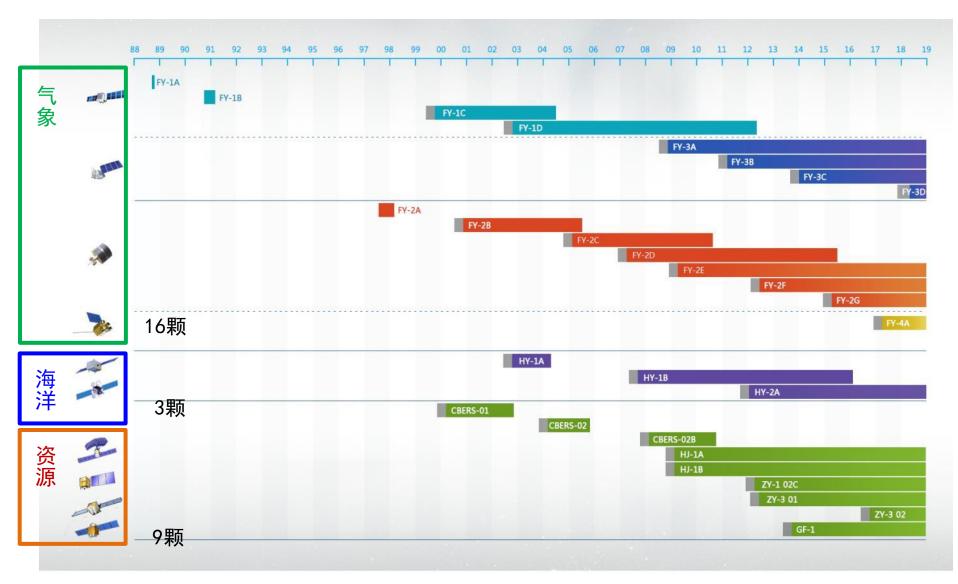
- National Key R&D Program of China
- Chinese FY Satellite Program
- Chinese HY Satellite Program
- Chinese ZY Satellite Program

Shanghai Institute of Technical Physics (SITP), CAS

Anhui Institute of Optics and Fine Mechanics (AIOFM), CAS

```
Natural
Benchmark
(Lunar, DCC, PICS)
& Traceability chains
```


Academy of OPTO-Electronics (AOE), CAS


Satellite Data Reprocessing

National Satellite Meteorological Center (NSMC), CMA **Retrospective recalibration of historical Chinese EO satellite data**

30 years' Chinese historical Satellite data (2018-2022)

Conclusion

■ With the improved instrument performance (NE∆T), and traceable radiometric measurements, FY series can be one important components of global observation to enhance the support for the quantitative application.

Current FY-3 series are expected to work until 2035 with Early Morning orbit, Morning orbit, and Afternoon orbit and Rainfall mission.

Current FY-4 series are expected to work until 2040 with FY-4 East (133E) and FY-4 West (79E).

Future FY-5 and FY-6 are expected to provide service since 2030 and 2035 respectively.

FY data can been ordered through website http://satellite.cma.gov.cn

