Community Satellite Processing Package (CSPP) – Serving Savvy FY Satellite Users

Allen Huang

Space Science & Engineering Center (SSEC)
University of Wisconsin-Madison
FY 2019 FengYun Satellite User Conference
15-17 Nov., 2019
Haikou China

NOAA, CMA and EUMETSAT have the same important strategy: Operational Weather Polar and Geostationary Orbiting Satellites

We work together to support our user communities through direct access of critical satellite data and through training

NOAA Satellites Alone

NOAA and International Partners

NOAA Satellites with International Partners

Together the "Big Three" satellite systems measure critical variables for many applications

- Atmosphere
 - Temperature
 - Water Vapor
 - Ozone
 - Clouds
 - Lightning
 - Precipitation
 - Aerosols
 - Wind
 - CO, SO2,

- Land
 - Temperature
 - Soil moisture
 - Vegetation
 - Ice
 - Snow
 - Fires
 - Floods
 - Burnscars
 - Gas Flares*
 - Boats*

- Ocean
 - Temperature
 - Ocean/Coastal Water quality
 - Sediments
 - Clouds
 - Aerosols
 - Wind

CSPP is striving to lower the users' barrier of entry to provide these complicated product software from many different sensors to the community!

What is CSPP?

• The Community Satellite Processing Package (CSPP) is a collection of freely available software for processing data from Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) meteorological satellites.

• CSPP LEO/GEO supports the creation of calibrated observational data, geophysical derived products, and images from visible, infrared, and microwave sensors.

• CSPP LEO is funded by NOAA JPSS Program Office & GEO is supported by NOAA NWAS

CSPP Registrants 2150 in 99 countries so far

CSPP Users' Group Meeting

- Madison/WI, USA May 2013
- Darmstadt, Germany April 2015
- Madison/WI, USA June 2017
- Chengdu, China June 2019

• Promote the local use of satellite data

- Lectures and hands-on labs determined by student interest/needs
- Lectures, labs, data and software freely distributed <u>http://cimss.ssec.wisc.edu/dbs</u>

How can the data inform decision making?

- Remote sensing complemented by local knowledge
- Encourages international collaborations between the global environmental science community
- Teach the principles of remote sensing to foster the next generation of scientists
- To date 19 workshops have been taught on 6 continents reaching students from more than 60 countries

CSPP LEO Software

CSPP Software	Product Description
1. SDR	S-NPP and NOAA-20 VIIRS, CrIS, and ATMS geolocated and calibrated earth observations.
2. VIIRS EDR	VIIRS imager cloud mask, active fires, surface reflectance, vegetation indices, sea surface temperature, land surface temperature, and aerosol optical depth.
3. HSRTV	Hyperspectral infrared sounder retrievals of temperature and moisture profiles, cloud properties, total ozone, and surface properties.
4. Polar2Grid	Reprojected imagery (single and multi-band) in GeoTIFF and AWIPS formats.
5. Hydra	Interactive visualization and interrogation of multispectral imagery and hyper spectral soundings.
6. MIRS	Microwave sounder retrievals of temperature and moisture profiles; surface properties; snow and ice cover; rain rate; and cloud/rain water paths.
7. CLAVR-x	Multispectral imager retrievals of cloud properties; aerosol optical depth; surface properties; ocean properties.
8. NUCAPS	Combined hyperspectral infrared sounder and microwave sounder retrievals of temperature and moisture profiles, cloud cleared radiances, and trace gases.

CSPP LEO Software Continued

CSPP Software	Product Description (continued)
9. IAPP	Combined infrared sounder and microwave sounder retrievals of temperature and moisture profiles, water vapor, total ozone, and cloud properties.
10. ACSPO	Multispectral imager retrievals of sea surface temperature.
11. Sounder Quicklook	Projected 2D maps of temperature and water vapor retrievals, and Skew-T profiles for individual atmospheric profiles.
12. VIIRS Imagery EDR	VIIRS imagery subset in Ground Track Mercator.
13. VIIRS Active Fires	S-NPP VIIRS M-Band fire and fire radiative power.
14. VIIRS Flood Detection	VIIRS 375m resolution global flood detections.

East China Normal University (ECNU) - Shanghai Satellite Direct Broadcast Processing System (DBPS)

Installation: Direct Broadcast (DB) Satellite Receiving and Processing System

Sea Surface Temperature (K)

105[°] E 110[°] E 115[°] E 120[°] E 125[°] E 130[°] E 135[°] E 45[°] N March 4, 2019 **CSPP-NUCAPS** Retrieval 40[°] N Temperature @1014 mb 35[°] N 00 30[°] N 25[°] N 20[°] N 290 260 270 280 300 310 320 Temperature (K) at 1014 hPa

105[°]E 110[°]E 115[°]E 120[°]E 125[°]E 130[°]E 135[°]E

March 4, 2019 CSPP-NUCAPS Retrieval Water Vapor @1014 mb

105[°]E 110[°]E 115[°]E 120[°]E 125[°]E 130[°]E 135[°]E

March 4, 2019 CSPP-NUCAPS Retrieval Water Vapor @850 mb

CSPP Geo CLAVR-x Cloud Products on AHI (1)

False Color Image (0.65, 0.86, 11µm)

clavrx_H08_20150908_0000

False Color Image Red=0.65µm, Green = 0.86µm, Blue = 11µm (reversed)

Cloud Type

Cloud Optical Depth

Himawari 8 - AHI, TS Etau, September 8, 2015

Opaque lce

Cirrus

CSPP Geo CLAVR-x Cloud Products on AHI (2)

False Color Image (0.65, 0.86, 11μm)

Cloud Top Temperature

False Color Image Red=0.65 μ m, Green = 0.86 μ m, Blue = 11 μ m (reversed)

Cloud Top Pressure

Himawari 8 - AHI, TS Etau, September 8, 2015

MiRS V11 Rainfall: Typhoon Neoguri on 7 July 2014

MiRS V11* Examples: Severe Weather, 28 April 2014

MiRS V11 Examples: Severe Weather, 28 April 2014

Flood Mapping from CMA FY3D vs JPSS (S-NPP) Observations

FY3D/MERSI

Slide curtosey of Sanmei Li & Donglian Sun

Using same algorithm (available from CSPP) for both FY3D & S-NPP producing consistent flood product

S-NPP/VIIRS

Flood Mapping from First FY4A (AGRI- GEO) results

Himawari/AHI

FreeGIF.org

FY4A/AGRI Flood Map 20180821 00:34 to 01:15(UTC)

FY4A/AGRI

Slide curtosey of Sanmei Li & Donglian Sun

Flood Mapping from First FY4A (AGRI- GEO) results

~ 10 hour composite

Himawari/AHI

FY4A/AGRI

Slide curtosey of Sanmei Li & Donglian Sun

Himawari-8/AHI Flood Mapping

20 40 60 80 100

Himawari-8/AHI Flood Map 20180821 00:00 to 01:00(UTC)

Himawari-8/AHI flood animation in Cambodia on Aug. 21, 2018

FY4A/AGRI Flood Mapping

FY4A/AGRI Flood Map 20180821 00:34 to 03:30(UTC)

FY4A/AGRI flood animation in India on Aug. 21, 2018

Slide curtosey of Sanmei Li & Donglian Sun

FY4A/AGRI Flood Map 20180821 00:34 to 09:30(UTC)

AGRI (centering around 104.7 °E) has better spatial resolution and geolocation accuracy around India.

Slide curtosey of Sanmei Li & Donglian Sun

The spatial resolution of AHI AHI around India decreases to 3-km in longitude direction, which brings issues to the flood detection and geolocation.

FY3D/MERSI Flood Mapping

FY-3D/MERSI flood map in Venezuela shows consistent flood detection results to Suomi-NPP/VIIRS.

Slide curtosey of Sanmei Li & Donglian Sun

Joint ABI/VIIRS flood maps integrating GEO/LEO

ABI

VIIRS

The joint ABI/VIIRS flood maps inherit both the maximal clearsky coverage from the ABI results and the good inundation detail from the **VIIRS** results.

Community Satellite Processing Package (CSPP) – Serving Savvy FY Satellite Users SUMMARY

CSPP is to empower you with tools for intelligent use of FY and international meteorological satellite data

- Continue to upkeep and support you with the most advanced algorithms to produce the products/applications that you need
- Continue to innovate and improve your capability to harness the global and regional weather satellite data/products provided by the "Big Three" (NOAA, CMA, & EUMETSAT)
- Continue to provide timely support and training

Community Satellite Processing Package (CSPP) – Serving Savvy FY Satellite Users

CSPP Leo: <u>http://cimss.ssec.wisc.edu/cspp/</u>

CSPP Geo: <u>http://cimss.ssec.wisc.edu/csppgeo/</u>

ISEE/RealEarth: http://isee.ssec.wisc.edu/

Direct Broadcast Workshop: http://cimss.ssec.wisc.edu/dbs/

