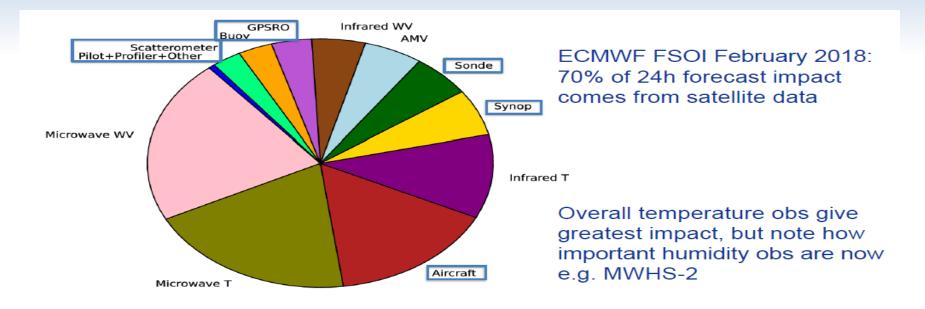


1-5 November 2021 Beijing,China

Preparing for assimilation of the combined microwave sounding observations aboard on the early morning satellite FY-3E in GRAPES-4Dvar


Peiming Dong, Fuzhong Weng, Hao Hu, Changjiao Dong, Wanlin Kan

Chinese Academy of Meteorological Sciences, China

Outlines

- 1. Background
- 2. FY-3E Combined microwave sounding data (CMWS)
- 3. Satellite observation operator ARMS in GRAPES-4Dvar
- 4. Bias characteristics and bias correction
- 5. Physical retrieval of CLW and TPW for cloud detection
- 6. Conclusion and discussion

Satellite microwave observation has great contribution to NWP

ECMWF: Within 24 hours, 70% of the impact on the accuracy of numerical prediction comes from satellite data and nearly 50% from satellite microwave data.

Chinese FY-3E early morning Meteorological Satellite

Payload	Full name
MERSI-LL	Medium Resolution Spectral Imager-LL
HIRAS-2	Hyperspectral Infrared Atmospheric Sounder-2
MWTS-3	Micro-Wave Temperature Sounder-3
MWHS-2	Micro-Wave Humidity Sounder-2
GNOS-2	GNSS Radio Occultation Sounder-2
WindRad	Wind Radar
SSIM	Solar Spectral Irradiance Monitor
SIM-2	Solar Irradiance Monitor-2
X-EUVI	Solar X-ray and Extreme Ultraviolet Imager
Tri-IPM	Triple-angle Ionospheric PhotoMeter
SEM	Space Environment Monitor

Focus on preparing for assimilation of FY-3E microwave observation

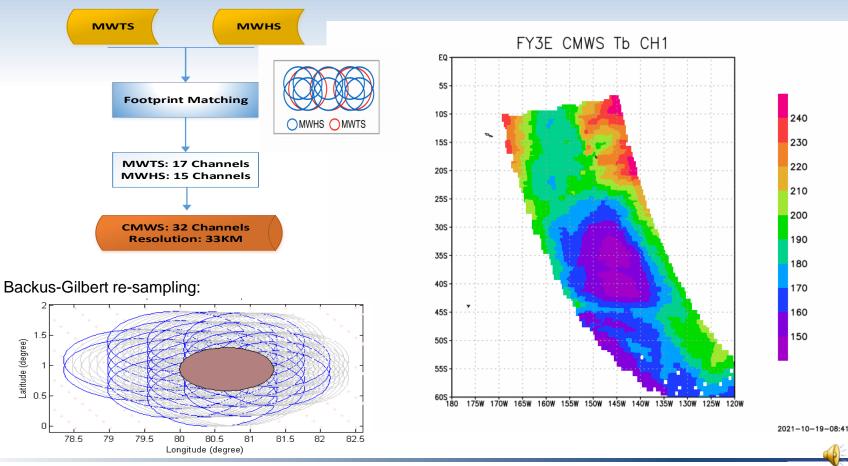
Table 1. Channel setting and centre frequency for microwave sounders							
FY-3D MWTS/MWHS	FY-3E MWTS/MWHS	ATMS	Centre frequency				
Channel No.	Channel No.	Channel No.	(GHz)				
	1	1	23.8				
	2	2	31.4				
1	3	3	50.3				
2	4	4	51.76				
3	5	5	52.8				
	6		53.246±0.08				
4	7	6	53.596 ± 0.115				
	8		53.948 ± 0.081				
5	9	7	54.40				
6	10	8	54.94				
7	11	9	55.50				
8	12	10	f0=57.290344				
9	13	11	f0±0.217				
10	14	12	f0±0.322±0.048				
11	15	13	f0±0.322±0.022				
12	16	14	f0±0.322±0.010				
13	17	15	f0±0.322±0.0045				
		16	88.2				
1	1		89.0				
2	2		118.75 ± 0.08				
3	3		118.75 ± 0.2				
4	4		118.75 ± 0.3				
5	5		118.75 ± 0.8				
6	6		118.75 ± 1.1				
7	7		118.75±2.5				
8	8		118.75±3.0				
9	9		118.75 ± 5.0				
10			150.0				
	10	17	165.5(166.0/FY-3E)				
11	11	22	183.31±1				
12	12	21	183.31 ± 1.8				
13	13	20	183.31±3				
14	14	19	183.31±4.5				
15	15	18	183.31±7				
	А						

1 Temperature and humidity observation are two separate units.

✓ Combined microwave sounding data (CMWS).

2 Satellite observation operator in GRAPES-4Dvar.

✓ Transfer from RTTOV to ARMS with support of FY-3E CMWS.

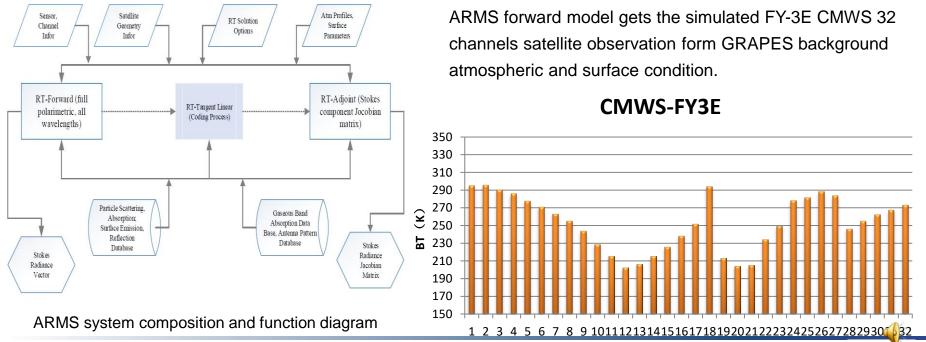

3 FY-3E data characteristics.

 ✓ Data characteristics is preliminary analyzed and bias correction gets ready.

4 FY-3E has 23.8 and 31.4 GHz channels.

✓ Physical retrieval scheme is designed and will be used in cloud detection.

FY-3E Combined microwave sounding data (CMWS)

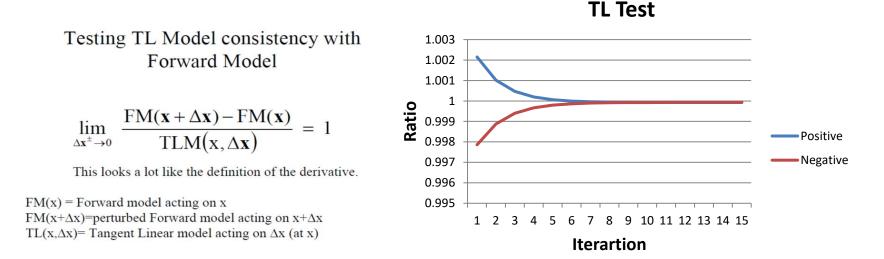

6

Satellite observation operator ARMS@Forward

ARMS: Advanced Radiative Transfer Modeling System. It is a new fast RTM developed by the CMA.

ARMS is merged into GRAPES to be the observation operator for satellite data assimilation. RTTOV was used before.

Fast tranmittance model for FY-3E CMWS data is built to make ARMS support its application.



Channel

11/12/2021

Satellite observation operator ARMS@Tangent Linear

ARMS Tangent Linear gets the increment of FY-3E CMWS satellite brightness temperature for the increment of GRAPES analysis variables.

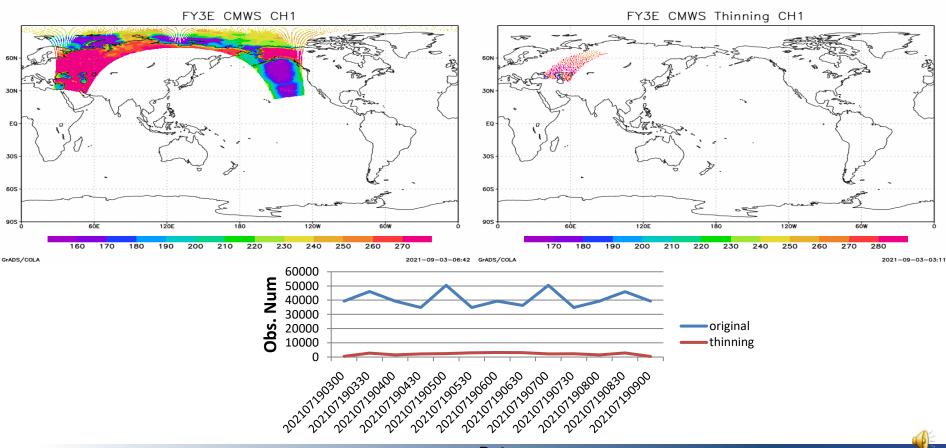
Satellite observation operator ARMS@Adjoint

ARMS Adjoint gets the gradient of FY-3E CMWS satellite brightness temperature to the GRAPES analysis variables.

Adjoint testing

- Objective: Assure that the adjoint is the transpose of the tangent linear
- Method: Construct Jacobians from TL and AD and compare

N inputs -> TL -> M outputs M inputs -> AD -> N outputs


Call TL N times with the ith element=1, all other elements =0 Put output into ith row of an NxM array

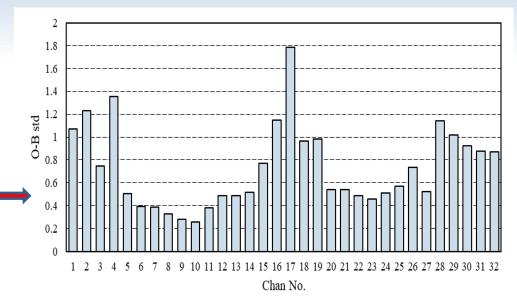
Call AD M times with the jth element=1, all other elements=0 Put output into a jth row of an MxN array

Verify that AD = TL^T to within machine precision

To make sure the channel:		1 9	
9	1	-1.012263959986517E-006 -1.012263959	986517E-006 close
9	2	-2.277677536352056E-006 -2.277677536	352056E-006 close
9	3	-2.490493073186355E-006 -2.490493073	186354E-006 close
9	4	-2.456054947419634E-006 -2.4560549474	419633E-006 close
9	5	-2.212194142299011E-006 -2.212194142	299011E-006 close
9	6	-8.647711369180328E-007 -8.647711369	180334E-007 close
9	7	2.784668804558908E-006 2.784668804	558907E-006 close
9	8	1.149210553621641E-005 1.149210553	621641E-005 close
9	9	2.746170915125834E-005 2.746170915	125833E-005 close
9	10	5.598702485048977E-005 5.598702485	048975E-005 close
9	11	1.069624025155993E-004 1.069624025	155992E-004 close
9	12	1.882807012277515E-004 1.882807012	277514E-004 close
9	13	3.092873686107324E-004 3.092873686	107322E-004 close
9	14	4.908281165946368E-004 4.908281165	946367E-004 close
9	15	7.600352428674176E-004 7.600352428	674176E-004 close
9	16	1.149142773981913E-003 1.149142773	981913E-003 close
9	17	1.709637433721817E-003 1.709637433	721816E-003 close
9	18	2.519578039191831E-003 2.519578039	191831E-003 close
9	19	3.726149317752808E-003 3.726149317	752810E-003 close
9	20	5.471091512068828E-003 5.471091512	068827E-003 close
9	21	7.775318984451017E-003 7.775318984	451012E-003 close
9	22	1.083408280801396E-002 1.083408280	801396E-002 close
9	23	1.473644945697138E-002 1.473644945	697138E-002 close
9	24	1.932342716847752E-002 1.932342716	847752E-002 close
9	25	2.452943747121644E-002 2.452943747	121643E-002 close
9	26	2.997916615265691E-002 2.997916615	265690E-002 close

FY-3E CMWS data used in GRAPES-4Dvar 30min time window slot

Date

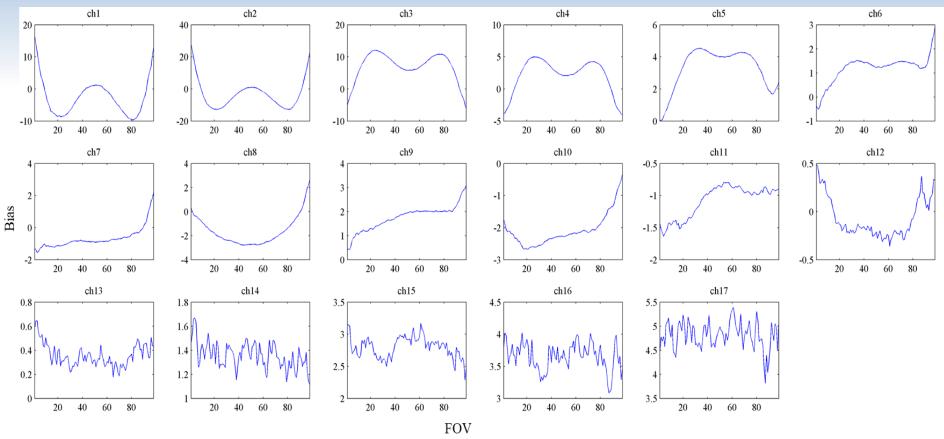

10

FY-3E CMWS O-B

Statistic

Date: 2021-07-12 to 2021-08-09

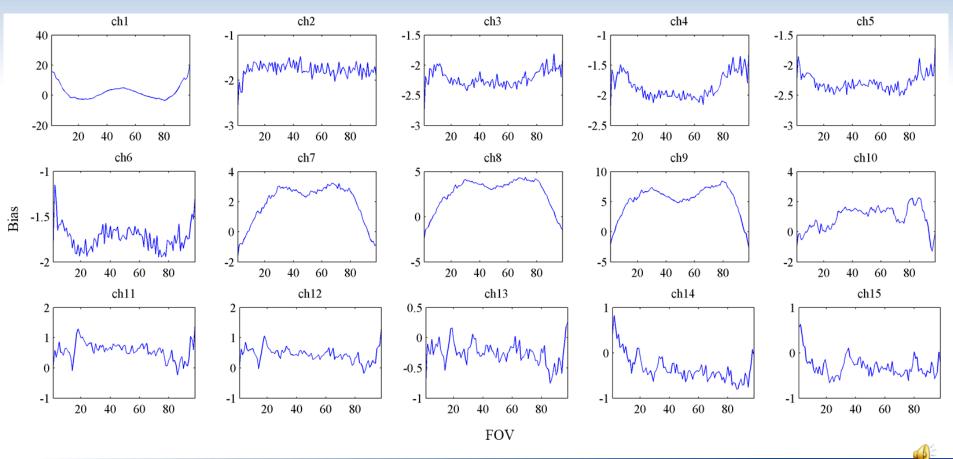
Collocation: FY4A L2 CLM (4 km) + MWTS/MWHS Cloud detection: 0:cloud,1:probably cloud 2:probably clear,3:clear $nALL = 7 \times 7 = 49$ nClear $\overline{nALL} \times 100\%$ ClearRatio = - $CloudRatio = \frac{nCloud}{nALL} \times 100\%$ Only FOVs with 100% Clear $(i \pm 3) \times (j \pm 3)$ grid box Ratio are selected.


- The standard deviation of O-B is relatively stable.
- The largest standard deviation in the window region is about 1-2 K.

11

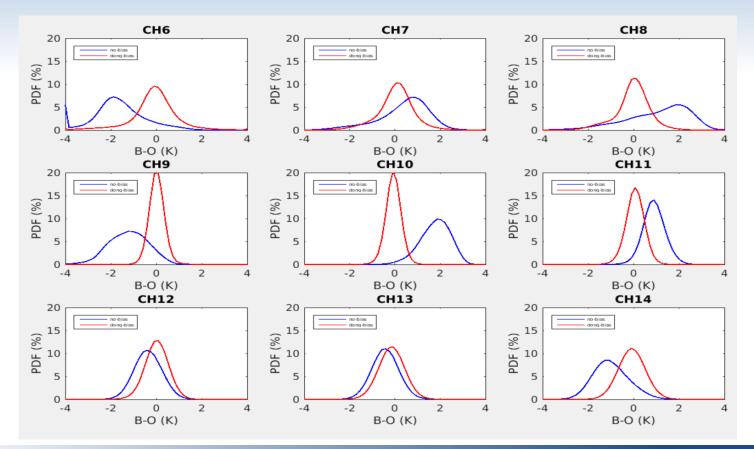
11/12/2021

28 * 28 km²

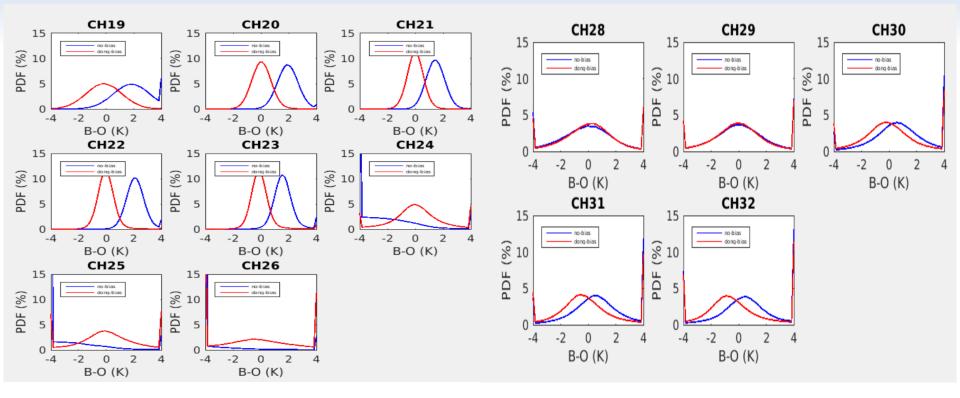

Bias characteristics for FY-3E CMWS@MWTS

11/12/2021

The angular dependence of channels 1-10 is obvious, especially for channel 1-4.


Bias characteristics for FY-3E CMWS@MWHS

11/12/2021 The angular dependence of channels 1 and 6–10 is obvious, especially for channel 1 and 7-9.


13

Bias Correction for FY-3E CMWS@MWTS

11/12/2021

Bias Correction for FY-3E CMWS@MWHS

15

11/12/2021

Statistical and physical approach for retrieval of CLW and TPW Physical Approach

$$T_{b} = T_{s} [1 - (1 - \varepsilon)\Upsilon^{2}] - \Delta T (1 - \Upsilon) [1 + (1 - \varepsilon)\Upsilon]$$

$$V = \cos \theta [a_0 + a_1 \ln(T_s - T_{b23}) + a_2 \ln(T_s - T_{b31})]$$

$$L = \cos \theta [b_0 + b_1 \ln(T_s - T_{b23}) + b_2 \ln(T_s - T_{b31})]$$

Statistical Approach $a_0 = 247.92 - (69.235 - 44.177 \cos \theta) \cos \theta$ $a_1 = -116.27$ $a_2 = 73.409$ $b_0 = 8.240 - (2.622 - 1.846 \cos \theta) \cos \theta$ $b_1 = 0.754$ $b_2 = -2.265$ (Grody et al.,2001)

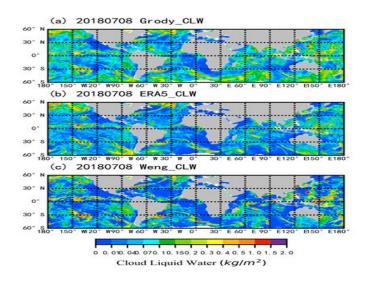
$$L = a_0 \mu \left[\ln(T_s - TB_{31}) - a_1 \ln(T_s - TB_{23}) - a_2 \right]$$
$$V = b_0 \mu \left[\ln(T_s - TB_{31}) - b_1 \ln(T_s - TB_{23}) - b_2 \right]$$

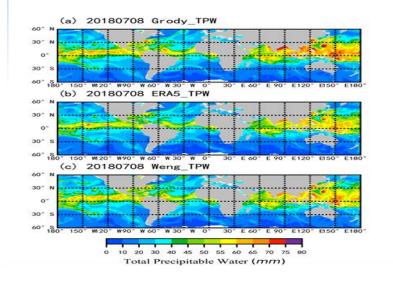
$$a_{0} = -0.5\kappa_{v23} / (\kappa_{v23}\kappa_{l31} - \kappa_{v31}\kappa_{l23})$$

$$b_{0} = 0.5\kappa_{l23} / (\kappa_{v23}\kappa_{l31} - \kappa_{v31}\kappa_{l23})$$

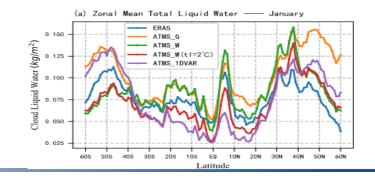
$$a_{1} = \kappa_{v31} / \kappa_{v23}$$

$$b_{1} = \kappa_{l31} / \kappa_{l23}$$
Sea Surface
Temperature

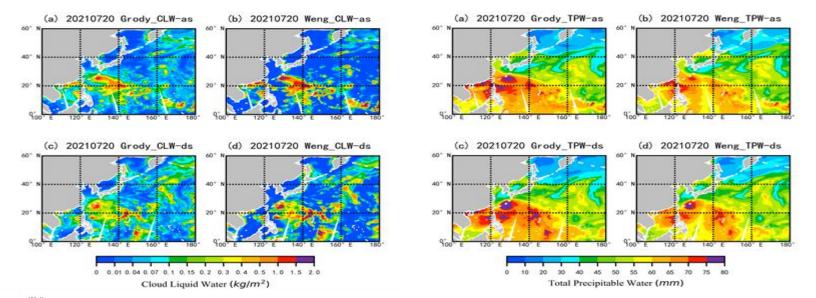

$$a_{2} = -2.0(\tau_{o31} - a_{1}\tau_{o23}) / \mu + (1.0 - a_{1})\ln(T_{s}) + \ln(1.0 - \varepsilon_{31}) - a_{1}\ln(1.0 - \varepsilon_{23})$$

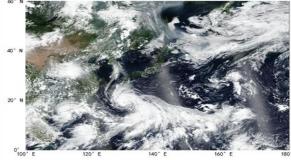

$$b_{2} = -2.0(\tau_{o31} - b_{1}\tau_{o23}) / \mu + (1.0 - b_{1})\ln(T_{s}) + \ln(1.0 - \varepsilon_{31}) - b_{1}\ln(1.0 - \varepsilon_{23})$$

$$\kappa_{l} = a_{l} + b_{l}T_{l} + c_{l}T_{l}^{2}$$


$$\tau_{o} = a_{o} + b_{o}T_{s}$$
(Weng et al.,2003)

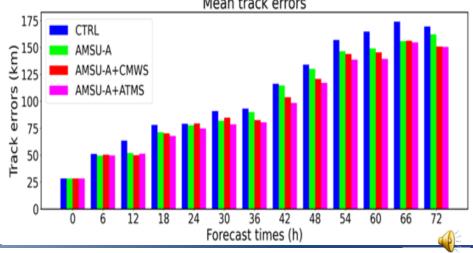
Comparison of the approach@global retrieval





The global inversion results show that the numerical value and range of the cloud liquid water path in the middle and high latitudes of the statistical algorithm are generally higher than that of the physical algorithm and reanalysis data.

Comparison of the approach@regional retrieval


The comparison between the two algorithms and the VIIRS visible cloud image shows that the physical algorithm corresponds well to the visible light cloud image, and the statistical algorithm misjudges the non-cloud area as having clouds.

Conclusion and discussion

The homework is doing well to assimilate the microwave observation onboard the early morning satellite FY-3E into GRAPES-4Dvar. The key points are:

- MWTS and MWHS are joined into a combined microwave sounding data (CMWS), making the temperature and humidity observation are assimilated in one data stream.
- The satellite observation operator in GRAPES is transferred to ARMS. The accuracies of the ARMS forward tangent linear and adjoint models implemented for FY-3E CMWS are verified.
- The data bias, especially scan-angle dependent bias is highly concerned and bias correction is prepared.
- The retrieval of CLW and TPW with physical constraints are more reliable. It will be used in QC procedure.

Assimilation of a proxy data FY-3D CMWS has produced a positive forecast impact on typhoon numerical prediction. It is highly anticipated that FY-3E CMWS will contribute a lot to NWP.

Mean track errors

Thanks for your attention