

版本号	日期	修改者	修改描述
V1.0.0	2024.03.26	赵宏伟	新建

目 录

1	产品定	义	.1
2	产品规	格和格式	.1
	2.1	产品规格	.1
	2.2	产品文件	.2
	2.3	产品科学数据集	.2
2.4	数据维	数介绍	.2
2.5	数据集	介绍	.3
3	产品算	法原理和处理流程	.5
	3.1	算法基本原理	.5
	3.2	处理流程	.7
4	产品示	例	.8
5	产品合	理性评估	.9
	5.1	产品合理性评估方法和数据	.9
	5.2	产品合理性评估结果	10
6	产品使	用说明1	12
	6.1	产品使用说明	12
	6.2	应用限制条件	12
7	产品制	作及技术支持1	13
	7.1	产品技术责任人	13
	7.2	文档引用方式和建议引用文献	13
	7.3	参考文献	13

1 产品定义

降水过程所释放的潜热(Latent heating,简称 LH)是驱动大气环流最主要的能量来源, 而潜热的垂直结构是决定大气运动的重要参数。

风云三号 G 星(FY-3G)是我国首颗、也是国际上继 1997 年发射的 TRMM、2014 年发射的 GPM 以后第三颗降水雷达卫星,于 2023 年 4 月 16 日在酒泉卫星发射中心成功 发射。FY-3G 的降水雷达(PMR)能够探测降水垂直结构信息。

USTC-VPH 潜热产品是联合 FY-3G 降水雷达的 L2 瞬时视场降水率产品和环境场温 度资料通过物理反演得到。USTC-VPH 反演算法基于降水率廓线的垂直梯度与潜热的物 理联系^[1,2],利用 FY-3G PMR L2 级降水率廓线产品作为输入,辅助以大气温度等环境变 量,在 PMR 判定的每一个降水像元上,利用降水云垂直结构与潜热之间的定量物理联系 反演出具有垂直分辨率的潜热加热率(单位 K/hr)。算法对卫星降水测量雷达探测的每 一条轨道都进行了轨道级潜热反演并产生对应的轨道级潜热产品。在轨道产品的基础上, 可以通过采用投影拼接、去重复、以及其他质量控制方案合成潜热日产品。根据生成的 潜热日产品,进行多天数据的合成,可以进一步生成潜热月产品。USTC-VPH 算法无需 降水类型等先验条件,在中高纬和青藏高原地区具有其独特的优越性。计算结果对于深 入揭示和理解全球范围的降水云内部潜热分布特点、理解气溶胶对降水云的热力学反馈、 数值天气模式的热力学同化等具有重要作用。

本文档主要介绍 FY-3G 卫星载荷 PMR L2 级 USTC-VPH 潜热产品。

序号	产品名称	业务/试验
1	FY-3G PMR L2 VPH 潜热产品	业务

表 1-1 FY-3G USTC-VPH 潜热产品列表

2 产品规格和格式

2.1产品规格

产品名称	投影方式	覆盖范围	空间分辨率	更新频次
FY-3G PMR L2 VPH 潜热产品	无	±52°	水平:星下 5km 垂直:250m	轨道

表 2-1 FY-3G USTC-VPH 潜热产品规格列表

2.2产品文件

序号	文件名称	格式	周期	产品描述	关键词
1	FY3G_PMRORBA_L2_VPH_MLT _NUL_YYYYMMDD_HHmm_5000M _V0.HDF	HDF	轨道	FY-3G PMR Ku 雷达 L2 轨道升轨潜热产品	升轨
2	FY3G_PMRORBD_L2_VPH_MLT _NUL_YYYYMMDD_HHmm_5000M _V0.HDF	HDF	轨道	FY-3G PMR Ku 雷达 L2 轨道降轨潜热产品	降轨

表 2-2 USTC-VPH 潜热产品数据文件列表

2.3产品科学数据集

科学数据集					
序号	数据名	数据英文描述	数据中文描述		
1	Latitude	Latitude in WGS84	纬度		
2	Longitude	Longitude in WGS84	经度		
3	dayCount	Scan Line Time (day count)	扫描线对地观测起始时刻 天计数		
4	msCount	Scan Line Time (milliseconds count)	扫描线对地观测起始时刻 毫秒计数		
5	elevation	Elevation of the measurement point.	测量点的地形高程		
6	LandSurfaceType	Land surface type	地表类型		
7	height	Height	每个距离单元海拔高度		
8	flagPrecip	Precipitation flag	降水标识		
9	binRealSurface	Range bin number for real surface	实际地表的距离库号		
10	binStormTop	Range bin number for the storm top	风暴顶部的距离库号		
11	heightStormTop	Height of storm top	风暴顶高度		
12	typePrecip	Precipitation type	降水类型		
13	precipRate	Precipitation rate	降水率		
14	precipRateNearSurface	Precipitation rate near surface	近地表降水率		
15	latentHeating	Latent heating	潜热		
16	airTemperature	Air Temperature	气温		

表 2-3 USTC-VPH 潜热产品科学数据集

2.4数据维数介绍

USTC-VPH 潜热产品存储数据为多维数组,其维数说明和数值如表 2-4 所示。

名称	数值	说明
nscan	可变量	扫描行数
nray	59	每条扫描行中的角度单元数
nbin	400	垂直方向的距离库单元数

表 2-4 USTC-VPH 潜热产品数据维数说明

2.5数据集介绍

2.5.1 纬度(Latitude, Float32, 维数: nscan×nray×2)

瞬时视场中心的地球纬度,单位为度(°)。为每个波束分别计算了地球椭球表面 (第一维)和地球椭球之上约18km高度(第二维)两个位置的纬度。纬度为南负北正。 有效值范围为-90.0 到 90.0。特殊值定义有:-9999.9(填充值)。

2.5.2 经度(Longitude, Float32, 维数: nscan×nray×2)

瞬时视场中心的地球经度,单位为度(°)。为每个波束分别计算了地球椭球表面 (第一维)和地球椭球之上约18km高度(第二维)两个位置的经度。经度为西负东正。 有效值范围为-180.0到180.0。特殊值定义有:-9999.9(填充值)。

2.5.3 扫描线对地观测起始时刻天计数(dayCount, Int16, 维数: nscan)

扫描线对地观测起始时刻的天计数。有效值范围为 7670 到 32766。特殊值定义有:-9999(填充值)。

2.5.4 扫描线对地观测起始时刻毫秒计数(msCount, Int32, 维数: nscan)

扫描线对地观测起始时刻的毫秒计数,单位为ms。有效值范围为0到864000000。 特殊值定义有:-9999(填充值)。

2.5.5 地形高程(elevation, Float32, 维数: nscan×nray)

测量点的海拔高度,单位为m。有效值范围为-500.0 到 9000.0。特殊值定义有:-9999.9 (填充值)。

2.5.6 地表类型(LandSurfaceType, Int16, 维数: nscan×nray)

测量点的地表类型。为每个波束分别计算了测量点的地表类型。有效值范围为0到 3。各个值代表意义:0海洋;1陆地;2水陆边界;3内陆水体;-9999填充值。

2.5.7 海拔高度(height, Float32, 维数: nscan×nray×nbin)

每个距离单元的海拔高度,单位为m。为每个距离单元中心分别计算了海拔高度。 有效值范围为-5000到18000。特殊值定义有:-9999.9(填充值)。

2.5.8 降水标识(flagPrecip, Int8, 维数: nscan×nray)

降水标识。为每个波束分别计算了降水标识。各个值代表意义:0 无降水;1 有降水;2 可能有降水;-99 填充值。

2.5.9 实际地表的距离库号(binRealSurface, Int16, 维数: nscan×nray)

实际地表的距离库号。为每个波束分别计算了实际地表的距离库号。有效值范围为 1 到 500。特殊值定义有:-9999(填充值)。

2.5.10 风暴顶部的距离库号(binStormTop, Int16, 维数: nscan×nray)

风暴顶部的距离库号。为每个波束分别计算了风暴顶部的距离库号。有效值范围为1 到 500。特殊值定义有:-9999(填充值)

2.5.11 风暴顶高度(heightStormTop, Float32, 维数: nscan×nray)

风暴顶部的海拔高度,单位为m。为每个波束分别计算了风暴顶部的海拔高度。有效值范围为0.0到180000.0。特殊值定义有:-9999.9(填充值)。

2.5.12 降水类型(typePrecip, Int16, 维数: nscan×nray)

降水类型标识,1为层状降水,2为对流降水。有效值范围为1到500,特殊值定义有:-9999(填充值),-1111(无降水)。

2.5.13 降水率 (precipRate, Float32, 维数: nscan×nray×nbin)

三维降水率廓线,单位为mm/hr,有效值范围为0.0到100.0。特殊值定义有:-9999.9 (填充值)。

2.5.14 近地表降水率(precipRateNearSurface, Float32, 维数: nscan×nray)

近地表层的降水率,单位为mm/hr,有效值范围为0.0到100.0。特殊值定义有:-9999.9 (填充值)。

2.5.15 潜热(latentHeating, Float32, 维数: nscan×nray×nbin)

三维潜热廓线,单位为 K/hr,有效值范围为-80 到 80。特殊值定义有:-9999.9(填充值)。

2.5.16 气温 (airTemperature, Float32, 维数: nscan×nray×nbin)

三维温度廓线,单位为℃,有效值范围为-100.0 到 100.0。特殊值定义有:-99(填充值)。

3 产品算法原理和处理流程

3.1 算法基本原理

降水率的垂直变化率反映水物质的相态变化信息。Fu 等人^[3]和 Liu 等人^[4]研究发现降 水率的垂直分布反映了降水粒子生长、蒸发和释放潜热的不同微物理过程。Li 等人^[1]提 出当风暴处于稳态状态下,降水率随高度的变化率约等于降水粒子质量随时间的变化率

$$\Gamma = -\frac{\partial R_r}{\partial Z} = -\frac{\partial R_r}{\partial t} \frac{\partial t}{\partial z} = \frac{\partial [W(\overline{u} - \overline{w})]}{\partial t} \frac{1}{\overline{u} - \overline{w}} = \frac{\partial W}{\partial t}$$
(1)

式中, Γ 表示降水率随高度的变化率, R_r 表示降水率, z和 t表示高度和时间, W表示液相和固相的总降水质量含量(kg/m³)。 \overline{u} 和 \overline{w} 表示雨滴的下落速度和云中的垂直速度。

Li 等人^[5]研究对流降水和层性降水中与潜热相关的相态变化,当假设云水形成雨水 过程不涉及水凝物相态变化,则降水释放(吸收)的潜热主要在云水形成时产生。当风 暴处于稳态,云水含量相对稳定,则新产生的云粒子质量必须以相同时间速率被新形成 的雨水质量消耗。因此 LH 可以直接由降水形成速率(dw)计算得到:

$$LH = \frac{\partial W}{\partial t} \frac{1}{\rho_a c_p} (f_{c-e} L_v + f_{d-s} L_s + f_{f-m} L_f)$$
⁽²⁾

其中,LH 表示潜热(K/hr), ρ_a 和 C_p 分别为干空气的密度和比热容(单位: kg/m³, J/kg/K); L_v 、 L_s 和 L_f 分别为凝结、凝华和冻结的潜热常数(单位: J/kg); f_{c-e} 、 f_{d-s} 和 f_{f-m} 分别 是三种相变的云水质量比。通过联合方程(1)和(2),可进一步建立LH 与降雨率垂 责任人: 李锐 联系电话: 0551-63600027 邮箱: rli7@ustc.edu.cn 页码: 5 直梯度理论联系的公式:

$$LH = \Gamma \frac{1}{\rho_a C_p} (f_{c-e} L_v + f_{d-s} L_s + f_{f-m} L_f)$$
(3)

然而,实际大气中 LH 与降雨率垂直梯度并不与上述理论关系一致。一方面,云的 形成速率往往并不等于降水的形成速率,可用一个比例系数来表征它们之间的关系,该 关系随着云的演化阶段而动态变化。另一方面,某一特定位置区域的降水不一定是由该 区域的云水粒子形成,也可能是从邻近区域通过水平平流输送而来。基于这些因素影响, LH 与降雨率垂直梯度的关系可进一步更新为:

$$LH = K \times \Gamma \frac{1}{\rho_a c_p} \left(f_{c-e} L_v + f_{d-s} L_s + f_{f-m} L_f \right) + LH_0$$
(4)

其中参数 K 表示云水形成速率与雨水形成速率的比值,LH₀表示水平位移的雨水产生的 潜热。在实际情况下,由于目前卫星降雨垂直观测无法提供能够动态量化 K 和 LH₀的信 息,K 和 LH₀因此假设为经验系数,可通过 WRF 模拟统计得出,详细内容见文献^[2]。

在等式(4)中,冻结潜热常数(即 L_f)大约是凝结潜热常数(L_v)的十分之一,而 冻结熔化过程对应的质量比也一般小于另两项,因此右边第三项(即 $f_{f-m}L_f$)可忽略不 计。不考虑冻结熔化过程后, $f_{c-e} + f_{d-s} \approx 1$ 。基于上述简化,等式(4)可变为:

$$LH \approx K \times \Gamma \frac{1}{\rho_a c_p} \left(f_{c-e} L_v + (1 - f_{c-e}) L_s \right) + LH_0$$
(5)

凝结蒸发过程所贡献的水的质量分数高度依赖于特定的气象条件,Li等人^[2]分析了 不同温度下水凝物的存在形式,将凝结蒸发相变的云水质量比简化表达为:

$$f_{c-e} = \begin{cases} 1 & T > 0 \ \mathcal{C} \\ 1 + \frac{T}{38} & -38 \ \mathcal{C} < T < 0 \ \mathcal{C} \\ 0 & T < -38 \ \mathcal{C} \end{cases}$$
(6)

3.2处理流程

3.2.1 输入文件

序号	名称	文件 格式	周期	描述
1.	降水率垂直廓线	HDF	轨道	FY3G卫星观测获取的降水率垂直廓线
2.	温度垂直廓线	HDF	轨道	grapse 预报场/ERA5 再分析资料获取的环境温度 垂直廓线

表 3-1 USTC-VPH 潜热产品输入文件列表

3.2.2 输出文件

表 3-2 USTC-VPH 潜热产品输出文件列表

序 号	产品名 称	产品格 式	周期	产品描述
1.	FY-3G PMR L2 VPH 潜 热产品	HDF5	轨道	本数据主要包含降水测量雷达反演得到的不同高度层潜热释 放率

3.2.3 处理流程

图 3-1 USTC-VPH 潜热产品处理流程图

责任人: 李锐

USTC-VPH 算法产品处理流程图如图 3-1 所示,从图 3-1 可以看出,基于 USTC-VPH 算法的 FY3G 卫星降水潜热产品工程化流程主要包含以下步骤:

1)根据 FY3G 卫星的降水测量雷达观测资料,反演得到降水率廓线,并与环境温度 廓线相融合,作为潜热反演的输入资料。此步骤详见 FY3G L2 降水率廓线产品相关说明。

2)将获取的降水廓线和温度廓线送入数据预处理模块进行数据预处理。数据预处理 主要包含缺测数据和异常数据的处理,采用缺测/异常格点四周数据的均值对缺测数据进 行填充,以及替换异常数据。

3)将原始数据分为高原地区和其他地区。

4)利用 USTC-VPH 算法实现降水潜热的反演,此时,根据 Li 等人(2019) 拟合的 高原地区反演参数对全球高原地区的降水潜热进行反演,利用非高原地区(其他地区) 数据拟合的反演参数对全球非高原地区的降水潜热进行反演。

5)合并步骤4中获得的降水潜热反演结果,获得降水潜热的轨道产品。

图 4-1 UTC 2023 年 8 月 1-5 日: (a) 全球地表降水率; (b-d) USTC-VPH 反演潜热(K/hr) 在 3km, 5km 和 7km 的水平分布。水平分辨率为 0.25°

图 4-1 展示了 FY3G 观测的全球地表降水率以及 USTC-VPH 反演的降水潜热在不同 高度(3km,5km 和 7km)的水平分布。总的来看,全球赤道、西北太平洋和南太平洋等 区域有较强的地表降水。相较于其他区域,这些区域降水释放的潜热量级也较高。在垂直方向上,3km高度层,在赤道以北表现出较多吸收潜热(<-0.07K/hr),而在赤道以南则以释放潜热为主。相比其他高度,5km降水潜热的量级最大,尤其是在赤道和西北太平洋地区(>0.5 K/hr)。而在更高高度(7km),降水潜热量级有所降低,但仍表现为正值。

图 4-2 展示了 UTC 2023 年 8 月 3 日 04:39, FY3G 卫星观测的卡努台风降水。如图 4-2 (a), 直线 A 经过卡努台风的眼墙和云墙区域,其降水垂直剖面(图 4-2 (b))显示出较多强对流降水。相应的,USTC-VPH 算法潜热除了在近地表层外,展现出从上到下的强对流型加热柱。沿着直线 B 获取的垂直剖面主要经过台风的外围区域,其降水垂直剖面以层性降水为主。相应的,USTC-VPH 算法反演潜热表现出典型的上正下负的层性潜热。总体而言,USTC-VPH 算法反演潜热分布和降水率分布相一致。

图 4-2 UTC 2023 年 8 月 3 日 04:39 观测的卡努台风: (a) 地表降水率; (b-c) 沿着 A 直线获取的降水率 垂直剖面和相应的 USTC-VPH 反演潜热垂直剖面; (d-e) 沿着 B 直线获取的降水率垂直剖面和相应的 USTC-VPH 反演潜热垂直剖面

5 产品合理性评估

5.1产品合理性评估方法和数据

由于大气探测手段的限制,潜热无法被直接观测得到^[6],因而没有可用的实地观测的潜热数据作为对照组,所以只能通过间接方法检验,可将本算法应用于 GPM DPR 卫星产品中,通过和现有潜热算法 SLH^[7-9]和 CSH^[10-11]产品交叉比较来对 USTC-VPH 降水潜热进行评估,现介绍如下。

5.2产品合理性评估结果

图 5-1 UTC 2017 年 8 月 16 日 02:47:00 GPM DPR 降水观测案例: (a) 地表降水率水平分布; (b) 降水率的垂直截面; (c) USTC-VPH 反演潜热; (d) SLH 反演潜热

利用 GPM DPR 观测数据评估 USTC-VPH 算法在中国北方地区的表现,并将 USTC-VPH 算法反演潜热与 SLH 潜热产品进行对比分析。

图 5-1 显示了 UTC 2017 年 8 月 16 日 02:47:00 GPM DPR 观测到的降水个例。A 区域存在一个中尺度对流系统,西部 118°E 附近有一个强对流中心,其地表降水率大于 20 mm/hr,在 A 区域的东部,降水率迅速下降,以层性降水为主。USTC-VPH 算法和 SLH 算法反演潜热分布相似,均在对流中心附近反演出贯穿整层大气的对流潜热加热,在东部区域反演出上正下负的层性潜热结构。

B 区域降水率相对较弱且较为均匀,地表降水率小于 5 mm/hr。USTC-VPH 算法和 SLH 算法反演结果均显示出层性潜热分布。SLH 算法在 4.5 km 以下反演出显著冷却, USTC-VPH 算法反演结果在略低于 SLH 算法的高度(3km 左右)出现正-负交界。总之, 两种算法反演潜热结构、分布和强度高度一致。

(2) 高原地区

图 5-2 UTC 2014 年 7 月 12 日 20:21:14: (a) 卫星观测的降水率垂直剖面; (b) SLH 反演潜热垂直剖面; (c) CSH 反演潜热垂直剖面; (d) USTC-VPH 反演潜热垂直剖面。右侧是所标出 A, B 区域对应的平均 廓线。(Li et al., 2019)

在青藏高原地区,利用卫星观测数据,将 USTC-VPH 算法与其他两种算法进行横向 对比。如图 5-2 所示,是在 UTC 2014 年 7 月 12 日 20:21:14 观测到的降水垂直剖面以及 三种算法反演的潜热垂直剖面。

总体而言, VPH 在高原南部地区所反演的潜热三维结构与 SLH、CSH 较为一致, 而 在高原上有明显的差异。

具体而言,GPM DPR 的观测表明 A 区域的地表降水率(标记为 A)小于 3mm/hr。 显示出两个柱形的降水回波,其中南部较弱,地表降水率小于 1 mm/hr。

SLH 和 CSH 均认为降水系统 A 为一个对流核心相伴生的层性降水,在层性降水区

的 6km 以下表现为明显的冷却,而在 6km 以上显著加热。它们都显示了与非降水云相关的雨顶上方的加热。SLH 的加热中心高于 CSH,表明对非降水云释放的潜热的估计更大。在 USTC-VPH 算法反演中,存在两个对流降水相对应的正加热柱,其中 1~2km 以下区域为负冷却。对于系统 A,结合 DPR 观测的降水三维结构,我们认为 VPH 潜热分布与降水率分布更加吻合。

在青藏高原的南坡上,有一个大面积的连续降水区域(标记为B),嵌入了两个对流核。一个位于北纬26°,另一个位于北纬27.5°。然而,SLH和CSH反演结果显示,在6km以上(以下)存在正(负)加热的层性降水潜热。SLH在28°N以北没有潜热反演,这是由于该算法主动摒弃了大地形区域。而CSH反演完全没有考虑地形,导致在地表下方依然存在潜热的反演结果。USTC-VPH反演潜热在6km以下显示与两个对流中心相对应的显著加热,并且,潜热的反演覆盖了整个降水系统。对于系统B,我们认为VPH潜热具有明显的优越性。

在 WRF 模拟数据上的一致性检验可知, USTC-VPH 算法精确捕捉到了 WRF 模式潜热的数据分布特征;在卫星观测数据上与 SLH 和 CSH 相比, USTC-VPH 算法反演潜热与其反演潜热整体结构一致。两种检验方法均表明, USTC-VPH 算法可有效反演获取降水潜热。

6 产品使用说明

6.1产品使用说明

本产品可用于揭示全球南北纬 50 度之间地区降水潜热的三维结构特征,以及用于与降水潜热相关地球科学研究和应用。随着潜热反演算法的不断进步,本产品会做后续的升级换代更新。

6.2应用限制条件

本算法所依据的理论基础有如下关键假设:

- (1) 短时间间隔内,降水率垂直廓线不随时间变化;
- (2) 降水云中新生成的云水恰好以相同的速率转化为雨水;

降水的水平和垂直位移误差可以通过经验统计的反演参数加以消除。

本算法在全球的应用没有特别的限制,尤其是该算法在大地形地区具有一定的应用优

7 产品制作及技术支持

7.1产品技术责任人

表 7-1	产品技术责	任人列表
-------	-------	------

序号	姓名	单位	联系电话	电子邮箱
1	赵宏伟	中国科学技术大学	13013038635	hwzhao@ustc.edu.cn
2	吴琼	国家卫星气象中心	010-68407027 转 801	wuqiong@cma.gov.cn

7.2 文档引用方式和建议引用文献

- [1]Li, R., Min, Q., & Fu, Y. (2011). 1997/98 El Niño-induced changes in rainfall vertical structure in the east pacific. Journal of Climate, 24(24), 6373–6391. https://doi.org/10.1175/JCLI-D-11-00002.1
- [2]Li, R., Min, Q., Wu, X., & Fu, Y. (2013). Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 47–63. <u>https://doi.org/10.1016/j.jqsrt.2012.11.029</u>
- [3]Li, R., Shao, W., Guo, J., Fu, Y., Wang, Y., Liu, G., et al. (2019). A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/ 2018JD029297

7.3参考文献

- Li, R., Min, Q., & Fu, Y. (2011). 1997/98 El Niño-induced changes in rainfall vertical structure in the east pacific. Journal of climate, 24(24), 6373-6391.
- [2] Li, R., Shao, W., Guo, J., Fu, Y., Wang, Y., Liu, G., ... & Li, W. (2019). A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124(2), 942-963.
- [3] Fu Y, Liu G. The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data[J]. Journal of applied meteorology, 2001, 40(12): 2130-2143.
- [4] Liu G, Fu Y. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements[J]. Journal of the Meteorological Society of Japan. Ser. II, 2001, 79(1): 131-143.
- [5] Li, R., Min, Q., Wu, X., & Fu, Y. (2013). Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes. Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 47–63. https://doi.org/10.1016/j. jqsrt.2012.11.029
- [6] 李锐,傅云飞,黄辰,2021:卫星遥感降水潜热的查表法和物理反演法简介,暴雨灾害,40(3): 259-270.

势。

- [7] Shige, S., Takayabu, Y. N., Tao, W. K., & Johnson, D. E. (2004). Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. *Journal of applied meteorology*, 43(8), 1095-1113.
- [8] Shige, S., Takayabu, Y. N., Tao, W. K., & Shie, C. L. (2007). Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. *Journal of applied Meteorology and Climatology*, 46(7), 1098-1124.
- [9] Shige, S., Takayabu, Y. N., & Tao, W. K. (2008). Spectral retrieval of latent heating profiles from TRMM PR data. Part III: Estimating apparent moisture sink profiles over tropical oceans. Journal of Applied Meteorology and Climatology, 47(2), 620-640.
- [10] Tao, W. K., Lang, S., Simpson, J., & Adler, R. (1993). Retrieval algorithms for estimating the vertical profiles of latent heat release their applications for TRMM. *Journal of the Meteorological Society of Japan. Ser. II*, 71(6), 685-700.
- [11] Tao, W. K., Lang, S., Simpson, J., WS, O., Johnson, D., Ferrier, B., ... & Adler, R. (2000). Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data. Journal of the Meteorological Society of Japan. Ser. II, 78(4), 333-355.
- [12] 邵文程. 利用降水廓线反演台风和高原潜热结构[D].中国科学技术大学,2019.